/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) NarrowingOnBasicTermsTerminatesProof [FINISHED, 0 ms] (4) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) dbl(0) -> 0 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) terms(X) -> n__terms(X) add(X1, X2) -> n__add(X1, X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) add(s(X), Y) -> s(n__add(activate(X), Y)) first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1). The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) sqr(0) -> 0 dbl(0) -> 0 add(0, X) -> X first(0, X) -> nil terms(X) -> n__terms(X) add(X1, X2) -> n__add(X1, X2) s(X) -> n__s(X) dbl(X) -> n__dbl(X) first(X1, X2) -> n__first(X1, X2) activate(n__terms(X)) -> terms(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__s(X)) -> s(X) activate(n__dbl(X)) -> dbl(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) NarrowingOnBasicTermsTerminatesProof (FINISHED) Constant runtime complexity proven by termination of constructor-based narrowing. The maximal most general narrowing sequences give rise to the following rewrite sequences: activate(n__first(x0, x1)) ->^* n__first(x0, x1) activate(n__first(0, x0)) ->^* nil activate(n__dbl(x0)) ->^* n__dbl(x0) activate(n__dbl(0)) ->^* 0 activate(n__s(x0)) ->^* n__s(x0) activate(n__add(x0, x1)) ->^* n__add(x0, x1) activate(n__terms(x0)) ->^* n__terms(x0) activate(n__terms(0)) ->^* cons(recip(0), n__terms(n__s(0))) s(x0) ->^* n__s(x0) first(x0, x1) ->^* n__first(x0, x1) first(0, x0) ->^* nil add(x0, x1) ->^* n__add(x0, x1) dbl(x0) ->^* n__dbl(x0) dbl(0) ->^* 0 sqr(0) ->^* 0 terms(x0) ->^* n__terms(x0) terms(0) ->^* cons(recip(0), n__terms(n__s(0))) ---------------------------------------- (4) BOUNDS(1, 1)