/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 7 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 364 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(tail(cons(X, XS))) -> mark(XS) active(cons(X1, X2)) -> cons(active(X1), X2) active(tail(X)) -> tail(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) tail(mark(X)) -> mark(tail(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tail(X)) -> tail(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of cons: active, proper, cons The following defined symbols can occur below the 1th argument of cons: active, proper, cons The following defined symbols can occur below the 0th argument of top: active, proper, cons The following defined symbols can occur below the 0th argument of proper: active, proper, cons The following defined symbols can occur below the 0th argument of active: active, proper, cons Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(tail(cons(X, XS))) -> mark(XS) active(tail(X)) -> tail(active(X)) proper(tail(X)) -> tail(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(cons(X1, X2)) -> cons(active(X1), X2) cons(mark(X1), X2) -> mark(cons(X1, X2)) tail(mark(X)) -> mark(tail(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(cons(X1, X2)) -> cons(active(X1), X2) cons(mark(X1), X2) -> mark(cons(X1, X2)) tail(mark(X)) -> mark(tail(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 5. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: zeros0() -> 0 mark0(0) -> 0 00() -> 0 ok0(0) -> 0 active0(0) -> 1 cons0(0, 0) -> 2 tail0(0) -> 3 proper0(0) -> 4 top0(0) -> 5 01() -> 7 zeros1() -> 8 cons1(7, 8) -> 6 mark1(6) -> 1 cons1(0, 0) -> 9 mark1(9) -> 2 tail1(0) -> 10 mark1(10) -> 3 zeros1() -> 11 ok1(11) -> 4 01() -> 12 ok1(12) -> 4 cons1(0, 0) -> 13 ok1(13) -> 2 tail1(0) -> 14 ok1(14) -> 3 proper1(0) -> 15 top1(15) -> 5 active1(0) -> 16 top1(16) -> 5 mark1(6) -> 16 mark1(9) -> 9 mark1(9) -> 13 mark1(10) -> 10 mark1(10) -> 14 ok1(11) -> 15 ok1(12) -> 15 ok1(13) -> 9 ok1(13) -> 13 ok1(14) -> 10 ok1(14) -> 14 proper2(6) -> 17 top2(17) -> 5 active2(11) -> 18 top2(18) -> 5 active2(12) -> 18 02() -> 20 zeros2() -> 21 cons2(20, 21) -> 19 mark2(19) -> 18 proper2(7) -> 22 proper2(8) -> 23 cons2(22, 23) -> 17 zeros2() -> 24 ok2(24) -> 23 02() -> 25 ok2(25) -> 22 proper3(19) -> 26 top3(26) -> 5 proper3(20) -> 27 proper3(21) -> 28 cons3(27, 28) -> 26 cons3(25, 24) -> 29 ok3(29) -> 17 zeros3() -> 30 ok3(30) -> 28 03() -> 31 ok3(31) -> 27 active3(29) -> 32 top3(32) -> 5 cons4(31, 30) -> 33 ok4(33) -> 26 active4(25) -> 34 cons4(34, 24) -> 32 active4(33) -> 35 top4(35) -> 5 active5(31) -> 36 cons5(36, 30) -> 35 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(tail(cons(X, XS))) -> mark(XS) active(cons(X1, X2)) -> cons(active(X1), X2) active(tail(X)) -> tail(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) tail(mark(X)) -> mark(tail(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tail(X)) -> tail(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence tail(ok(X)) ->^+ ok(tail(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / ok(X)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(tail(cons(X, XS))) -> mark(XS) active(cons(X1, X2)) -> cons(active(X1), X2) active(tail(X)) -> tail(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) tail(mark(X)) -> mark(tail(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tail(X)) -> tail(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(tail(cons(X, XS))) -> mark(XS) active(cons(X1, X2)) -> cons(active(X1), X2) active(tail(X)) -> tail(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) tail(mark(X)) -> mark(tail(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tail(X)) -> tail(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL