/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 396 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 455 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 150 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 136 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 91 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 36 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 85 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 93 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 45 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 83 ms] (34) typed CpxTrs (35) RewriteLemmaProof [LOWER BOUND(ID), 181 ms] (36) typed CpxTrs (37) RewriteLemmaProof [LOWER BOUND(ID), 127 ms] (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 150 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 115 ms] (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 110 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 132 ms] (46) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0, XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0) -> ok(0) proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0, XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(tt) -> ok(tt) proper(0) -> ok(0) proper(nil) -> ok(nil) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(tt) -> ok(tt) proper(0) -> ok(0) proper(nil) -> ok(nil) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] transitions: mark0(0) -> 0 tt0() -> 0 ok0(0) -> 0 00() -> 0 nil0() -> 0 active0(0) -> 0 U110(0, 0, 0, 0) -> 1 U120(0, 0) -> 2 splitAt0(0, 0) -> 3 pair0(0, 0) -> 4 cons0(0, 0) -> 5 afterNth0(0, 0) -> 6 snd0(0) -> 7 and0(0, 0) -> 8 fst0(0) -> 9 head0(0) -> 10 natsFrom0(0) -> 11 s0(0) -> 12 sel0(0, 0) -> 13 tail0(0) -> 14 take0(0, 0) -> 15 proper0(0) -> 16 top0(0) -> 17 U111(0, 0, 0, 0) -> 18 mark1(18) -> 1 U121(0, 0) -> 19 mark1(19) -> 2 splitAt1(0, 0) -> 20 mark1(20) -> 3 pair1(0, 0) -> 21 mark1(21) -> 4 cons1(0, 0) -> 22 mark1(22) -> 5 afterNth1(0, 0) -> 23 mark1(23) -> 6 snd1(0) -> 24 mark1(24) -> 7 and1(0, 0) -> 25 mark1(25) -> 8 fst1(0) -> 26 mark1(26) -> 9 head1(0) -> 27 mark1(27) -> 10 natsFrom1(0) -> 28 mark1(28) -> 11 s1(0) -> 29 mark1(29) -> 12 sel1(0, 0) -> 30 mark1(30) -> 13 tail1(0) -> 31 mark1(31) -> 14 take1(0, 0) -> 32 mark1(32) -> 15 tt1() -> 33 ok1(33) -> 16 01() -> 34 ok1(34) -> 16 nil1() -> 35 ok1(35) -> 16 U111(0, 0, 0, 0) -> 36 ok1(36) -> 1 U121(0, 0) -> 37 ok1(37) -> 2 splitAt1(0, 0) -> 38 ok1(38) -> 3 pair1(0, 0) -> 39 ok1(39) -> 4 cons1(0, 0) -> 40 ok1(40) -> 5 afterNth1(0, 0) -> 41 ok1(41) -> 6 snd1(0) -> 42 ok1(42) -> 7 and1(0, 0) -> 43 ok1(43) -> 8 fst1(0) -> 44 ok1(44) -> 9 head1(0) -> 45 ok1(45) -> 10 natsFrom1(0) -> 46 ok1(46) -> 11 s1(0) -> 47 ok1(47) -> 12 sel1(0, 0) -> 48 ok1(48) -> 13 tail1(0) -> 49 ok1(49) -> 14 take1(0, 0) -> 50 ok1(50) -> 15 proper1(0) -> 51 top1(51) -> 17 active1(0) -> 52 top1(52) -> 17 mark1(18) -> 18 mark1(18) -> 36 mark1(19) -> 19 mark1(19) -> 37 mark1(20) -> 20 mark1(20) -> 38 mark1(21) -> 21 mark1(21) -> 39 mark1(22) -> 22 mark1(22) -> 40 mark1(23) -> 23 mark1(23) -> 41 mark1(24) -> 24 mark1(24) -> 42 mark1(25) -> 25 mark1(25) -> 43 mark1(26) -> 26 mark1(26) -> 44 mark1(27) -> 27 mark1(27) -> 45 mark1(28) -> 28 mark1(28) -> 46 mark1(29) -> 29 mark1(29) -> 47 mark1(30) -> 30 mark1(30) -> 48 mark1(31) -> 31 mark1(31) -> 49 mark1(32) -> 32 mark1(32) -> 50 ok1(33) -> 51 ok1(34) -> 51 ok1(35) -> 51 ok1(36) -> 18 ok1(36) -> 36 ok1(37) -> 19 ok1(37) -> 37 ok1(38) -> 20 ok1(38) -> 38 ok1(39) -> 21 ok1(39) -> 39 ok1(40) -> 22 ok1(40) -> 40 ok1(41) -> 23 ok1(41) -> 41 ok1(42) -> 24 ok1(42) -> 42 ok1(43) -> 25 ok1(43) -> 43 ok1(44) -> 26 ok1(44) -> 44 ok1(45) -> 27 ok1(45) -> 45 ok1(46) -> 28 ok1(46) -> 46 ok1(47) -> 29 ok1(47) -> 47 ok1(48) -> 30 ok1(48) -> 48 ok1(49) -> 31 ok1(49) -> 49 ok1(50) -> 32 ok1(50) -> 50 active2(33) -> 53 top2(53) -> 17 active2(34) -> 53 active2(35) -> 53 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, U12, splitAt, pair, cons, snd, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: U12 < active splitAt < active pair < active cons < active snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top U12 < proper splitAt < proper pair < proper cons < proper snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: U12, active, splitAt, pair, cons, snd, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: U12 < active splitAt < active pair < active cons < active snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top U12 < proper splitAt < proper pair < proper cons < proper snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: U12(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: U12(gen_tt:mark:0':nil:ok3_0(+(1, +(n5_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: U12, active, splitAt, pair, cons, snd, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: U12 < active splitAt < active pair < active cons < active snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top U12 < proper splitAt < proper pair < proper cons < proper snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: splitAt, active, pair, cons, snd, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: splitAt < active pair < active cons < active snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top splitAt < proper pair < proper cons < proper snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) Induction Base: splitAt(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: splitAt(gen_tt:mark:0':nil:ok3_0(+(1, +(n1672_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: pair, active, cons, snd, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: pair < active cons < active snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top pair < proper cons < proper snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) Induction Base: pair(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: pair(gen_tt:mark:0':nil:ok3_0(+(1, +(n3844_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, snd, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: cons < active snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top cons < proper snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) Induction Base: cons(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: cons(gen_tt:mark:0':nil:ok3_0(+(1, +(n6322_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: snd, active, natsFrom, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: snd < active natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top snd < proper natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) Induction Base: snd(gen_tt:mark:0':nil:ok3_0(+(1, 0))) Induction Step: snd(gen_tt:mark:0':nil:ok3_0(+(1, +(n8907_0, 1)))) ->_R^Omega(1) mark(snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: natsFrom, active, s, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: natsFrom < active s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top natsFrom < proper s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) Induction Base: natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, 0))) Induction Step: natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, +(n10038_0, 1)))) ->_R^Omega(1) mark(natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: s, active, head, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: s < active head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top s < proper head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) Induction Base: s(gen_tt:mark:0':nil:ok3_0(+(1, 0))) Induction Step: s(gen_tt:mark:0':nil:ok3_0(+(1, +(n11270_0, 1)))) ->_R^Omega(1) mark(s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: head, active, afterNth, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: head < active afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top head < proper afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) Induction Base: head(gen_tt:mark:0':nil:ok3_0(+(1, 0))) Induction Step: head(gen_tt:mark:0':nil:ok3_0(+(1, +(n12603_0, 1)))) ->_R^Omega(1) mark(head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: afterNth, active, U11, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: afterNth < active U11 < active fst < active and < active sel < active tail < active take < active active < top afterNth < proper U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) Induction Base: afterNth(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: afterNth(gen_tt:mark:0':nil:ok3_0(+(1, +(n14037_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: U11, active, fst, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: U11 < active fst < active and < active sel < active tail < active take < active active < top U11 < proper fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (35) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) Induction Base: U11(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) Induction Step: U11(gen_tt:mark:0':nil:ok3_0(+(1, +(n17959_0, 1))), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) ->_R^Omega(1) mark(U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (36) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: fst, active, and, sel, tail, take, proper, top They will be analysed ascendingly in the following order: fst < active and < active sel < active tail < active take < active active < top fst < proper and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (37) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0))) -> *4_0, rt in Omega(n26676_0) Induction Base: fst(gen_tt:mark:0':nil:ok3_0(+(1, 0))) Induction Step: fst(gen_tt:mark:0':nil:ok3_0(+(1, +(n26676_0, 1)))) ->_R^Omega(1) mark(fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (38) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0))) -> *4_0, rt in Omega(n26676_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: and, active, sel, tail, take, proper, top They will be analysed ascendingly in the following order: and < active sel < active tail < active take < active active < top and < proper sel < proper tail < proper take < proper proper < top ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: and(gen_tt:mark:0':nil:ok3_0(+(1, n28609_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n28609_0) Induction Base: and(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: and(gen_tt:mark:0':nil:ok3_0(+(1, +(n28609_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(and(gen_tt:mark:0':nil:ok3_0(+(1, n28609_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (40) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0))) -> *4_0, rt in Omega(n26676_0) and(gen_tt:mark:0':nil:ok3_0(+(1, n28609_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n28609_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: sel, active, tail, take, proper, top They will be analysed ascendingly in the following order: sel < active tail < active take < active active < top sel < proper tail < proper take < proper proper < top ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sel(gen_tt:mark:0':nil:ok3_0(+(1, n33348_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n33348_0) Induction Base: sel(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: sel(gen_tt:mark:0':nil:ok3_0(+(1, +(n33348_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(sel(gen_tt:mark:0':nil:ok3_0(+(1, n33348_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0))) -> *4_0, rt in Omega(n26676_0) and(gen_tt:mark:0':nil:ok3_0(+(1, n28609_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n28609_0) sel(gen_tt:mark:0':nil:ok3_0(+(1, n33348_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n33348_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: tail, active, take, proper, top They will be analysed ascendingly in the following order: tail < active take < active active < top tail < proper take < proper proper < top ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: tail(gen_tt:mark:0':nil:ok3_0(+(1, n38592_0))) -> *4_0, rt in Omega(n38592_0) Induction Base: tail(gen_tt:mark:0':nil:ok3_0(+(1, 0))) Induction Step: tail(gen_tt:mark:0':nil:ok3_0(+(1, +(n38592_0, 1)))) ->_R^Omega(1) mark(tail(gen_tt:mark:0':nil:ok3_0(+(1, n38592_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (44) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0))) -> *4_0, rt in Omega(n26676_0) and(gen_tt:mark:0':nil:ok3_0(+(1, n28609_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n28609_0) sel(gen_tt:mark:0':nil:ok3_0(+(1, n33348_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n33348_0) tail(gen_tt:mark:0':nil:ok3_0(+(1, n38592_0))) -> *4_0, rt in Omega(n38592_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: take, active, proper, top They will be analysed ascendingly in the following order: take < active active < top take < proper proper < top ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: take(gen_tt:mark:0':nil:ok3_0(+(1, n40926_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n40926_0) Induction Base: take(gen_tt:mark:0':nil:ok3_0(+(1, 0)), gen_tt:mark:0':nil:ok3_0(b)) Induction Step: take(gen_tt:mark:0':nil:ok3_0(+(1, +(n40926_0, 1))), gen_tt:mark:0':nil:ok3_0(b)) ->_R^Omega(1) mark(take(gen_tt:mark:0':nil:ok3_0(+(1, n40926_0)), gen_tt:mark:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Obligation: TRS: Rules: active(U11(tt, N, X, XS)) -> mark(U12(splitAt(N, XS), X)) active(U12(pair(YS, ZS), X)) -> mark(pair(cons(X, YS), ZS)) active(afterNth(N, XS)) -> mark(snd(splitAt(N, XS))) active(and(tt, X)) -> mark(X) active(fst(pair(X, Y))) -> mark(X) active(head(cons(N, XS))) -> mark(N) active(natsFrom(N)) -> mark(cons(N, natsFrom(s(N)))) active(sel(N, XS)) -> mark(head(afterNth(N, XS))) active(snd(pair(X, Y))) -> mark(Y) active(splitAt(0', XS)) -> mark(pair(nil, XS)) active(splitAt(s(N), cons(X, XS))) -> mark(U11(tt, N, X, XS)) active(tail(cons(N, XS))) -> mark(XS) active(take(N, XS)) -> mark(fst(splitAt(N, XS))) active(U11(X1, X2, X3, X4)) -> U11(active(X1), X2, X3, X4) active(U12(X1, X2)) -> U12(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(active(X1), X2) active(splitAt(X1, X2)) -> splitAt(X1, active(X2)) active(pair(X1, X2)) -> pair(active(X1), X2) active(pair(X1, X2)) -> pair(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(active(X1), X2) active(afterNth(X1, X2)) -> afterNth(X1, active(X2)) active(snd(X)) -> snd(active(X)) active(and(X1, X2)) -> and(active(X1), X2) active(fst(X)) -> fst(active(X)) active(head(X)) -> head(active(X)) active(natsFrom(X)) -> natsFrom(active(X)) active(s(X)) -> s(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(tail(X)) -> tail(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) U11(mark(X1), X2, X3, X4) -> mark(U11(X1, X2, X3, X4)) U12(mark(X1), X2) -> mark(U12(X1, X2)) splitAt(mark(X1), X2) -> mark(splitAt(X1, X2)) splitAt(X1, mark(X2)) -> mark(splitAt(X1, X2)) pair(mark(X1), X2) -> mark(pair(X1, X2)) pair(X1, mark(X2)) -> mark(pair(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) afterNth(mark(X1), X2) -> mark(afterNth(X1, X2)) afterNth(X1, mark(X2)) -> mark(afterNth(X1, X2)) snd(mark(X)) -> mark(snd(X)) and(mark(X1), X2) -> mark(and(X1, X2)) fst(mark(X)) -> mark(fst(X)) head(mark(X)) -> mark(head(X)) natsFrom(mark(X)) -> mark(natsFrom(X)) s(mark(X)) -> mark(s(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) tail(mark(X)) -> mark(tail(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) proper(U11(X1, X2, X3, X4)) -> U11(proper(X1), proper(X2), proper(X3), proper(X4)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(splitAt(X1, X2)) -> splitAt(proper(X1), proper(X2)) proper(pair(X1, X2)) -> pair(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(afterNth(X1, X2)) -> afterNth(proper(X1), proper(X2)) proper(snd(X)) -> snd(proper(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(fst(X)) -> fst(proper(X)) proper(head(X)) -> head(proper(X)) proper(natsFrom(X)) -> natsFrom(proper(X)) proper(s(X)) -> s(proper(X)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(0') -> ok(0') proper(nil) -> ok(nil) proper(tail(X)) -> tail(proper(X)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) U11(ok(X1), ok(X2), ok(X3), ok(X4)) -> ok(U11(X1, X2, X3, X4)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) splitAt(ok(X1), ok(X2)) -> ok(splitAt(X1, X2)) pair(ok(X1), ok(X2)) -> ok(pair(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) afterNth(ok(X1), ok(X2)) -> ok(afterNth(X1, X2)) snd(ok(X)) -> ok(snd(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) fst(ok(X)) -> ok(fst(X)) head(ok(X)) -> ok(head(X)) natsFrom(ok(X)) -> ok(natsFrom(X)) s(ok(X)) -> ok(s(X)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) tail(ok(X)) -> ok(tail(X)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U11 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok tt :: tt:mark:0':nil:ok mark :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok U12 :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok splitAt :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok pair :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok cons :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok afterNth :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok snd :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok and :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok fst :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok head :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok natsFrom :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok s :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok sel :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok 0' :: tt:mark:0':nil:ok nil :: tt:mark:0':nil:ok tail :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok take :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok -> tt:mark:0':nil:ok proper :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok ok :: tt:mark:0':nil:ok -> tt:mark:0':nil:ok top :: tt:mark:0':nil:ok -> top hole_tt:mark:0':nil:ok1_0 :: tt:mark:0':nil:ok hole_top2_0 :: top gen_tt:mark:0':nil:ok3_0 :: Nat -> tt:mark:0':nil:ok Lemmas: U12(gen_tt:mark:0':nil:ok3_0(+(1, n5_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) splitAt(gen_tt:mark:0':nil:ok3_0(+(1, n1672_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1672_0) pair(gen_tt:mark:0':nil:ok3_0(+(1, n3844_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n3844_0) cons(gen_tt:mark:0':nil:ok3_0(+(1, n6322_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n6322_0) snd(gen_tt:mark:0':nil:ok3_0(+(1, n8907_0))) -> *4_0, rt in Omega(n8907_0) natsFrom(gen_tt:mark:0':nil:ok3_0(+(1, n10038_0))) -> *4_0, rt in Omega(n10038_0) s(gen_tt:mark:0':nil:ok3_0(+(1, n11270_0))) -> *4_0, rt in Omega(n11270_0) head(gen_tt:mark:0':nil:ok3_0(+(1, n12603_0))) -> *4_0, rt in Omega(n12603_0) afterNth(gen_tt:mark:0':nil:ok3_0(+(1, n14037_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n14037_0) U11(gen_tt:mark:0':nil:ok3_0(+(1, n17959_0)), gen_tt:mark:0':nil:ok3_0(b), gen_tt:mark:0':nil:ok3_0(c), gen_tt:mark:0':nil:ok3_0(d)) -> *4_0, rt in Omega(n17959_0) fst(gen_tt:mark:0':nil:ok3_0(+(1, n26676_0))) -> *4_0, rt in Omega(n26676_0) and(gen_tt:mark:0':nil:ok3_0(+(1, n28609_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n28609_0) sel(gen_tt:mark:0':nil:ok3_0(+(1, n33348_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n33348_0) tail(gen_tt:mark:0':nil:ok3_0(+(1, n38592_0))) -> *4_0, rt in Omega(n38592_0) take(gen_tt:mark:0':nil:ok3_0(+(1, n40926_0)), gen_tt:mark:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n40926_0) Generator Equations: gen_tt:mark:0':nil:ok3_0(0) <=> tt gen_tt:mark:0':nil:ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top