/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 1523 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: U101(tt, M, N) -> U102(isNatKind(activate(M)), activate(M), activate(N)) U102(tt, M, N) -> U103(isNat(activate(N)), activate(M), activate(N)) U103(tt, M, N) -> U104(isNatKind(activate(N)), activate(M), activate(N)) U104(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) U11(tt, V1, V2) -> U12(isNatKind(activate(V1)), activate(V1), activate(V2)) U12(tt, V1, V2) -> U13(isNatKind(activate(V2)), activate(V1), activate(V2)) U13(tt, V1, V2) -> U14(isNatKind(activate(V2)), activate(V1), activate(V2)) U14(tt, V1, V2) -> U15(isNat(activate(V1)), activate(V2)) U15(tt, V2) -> U16(isNat(activate(V2))) U16(tt) -> tt U21(tt, V1) -> U22(isNatKind(activate(V1)), activate(V1)) U22(tt, V1) -> U23(isNat(activate(V1))) U23(tt) -> tt U31(tt, V1, V2) -> U32(isNatKind(activate(V1)), activate(V1), activate(V2)) U32(tt, V1, V2) -> U33(isNatKind(activate(V2)), activate(V1), activate(V2)) U33(tt, V1, V2) -> U34(isNatKind(activate(V2)), activate(V1), activate(V2)) U34(tt, V1, V2) -> U35(isNat(activate(V1)), activate(V2)) U35(tt, V2) -> U36(isNat(activate(V2))) U36(tt) -> tt U41(tt, V2) -> U42(isNatKind(activate(V2))) U42(tt) -> tt U51(tt) -> tt U61(tt, V2) -> U62(isNatKind(activate(V2))) U62(tt) -> tt U71(tt, N) -> U72(isNatKind(activate(N)), activate(N)) U72(tt, N) -> activate(N) U81(tt, M, N) -> U82(isNatKind(activate(M)), activate(M), activate(N)) U82(tt, M, N) -> U83(isNat(activate(N)), activate(M), activate(N)) U83(tt, M, N) -> U84(isNatKind(activate(N)), activate(M), activate(N)) U84(tt, M, N) -> s(plus(activate(N), activate(M))) U91(tt, N) -> U92(isNatKind(activate(N))) U92(tt) -> 0 isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNatKind(activate(V1)), activate(V1), activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)), activate(V1)) isNat(n__x(V1, V2)) -> U31(isNatKind(activate(V1)), activate(V1), activate(V2)) isNatKind(n__0) -> tt isNatKind(n__plus(V1, V2)) -> U41(isNatKind(activate(V1)), activate(V2)) isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1))) isNatKind(n__x(V1, V2)) -> U61(isNatKind(activate(V1)), activate(V2)) plus(N, 0) -> U71(isNat(N), N) plus(N, s(M)) -> U81(isNat(M), M, N) x(N, 0) -> U91(isNat(N), N) x(N, s(M)) -> U101(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: U101(tt, M, N) -> U102(isNatKind(activate(M)), activate(M), activate(N)) U102(tt, M, N) -> U103(isNat(activate(N)), activate(M), activate(N)) U103(tt, M, N) -> U104(isNatKind(activate(N)), activate(M), activate(N)) U104(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) U11(tt, V1, V2) -> U12(isNatKind(activate(V1)), activate(V1), activate(V2)) U12(tt, V1, V2) -> U13(isNatKind(activate(V2)), activate(V1), activate(V2)) U13(tt, V1, V2) -> U14(isNatKind(activate(V2)), activate(V1), activate(V2)) U14(tt, V1, V2) -> U15(isNat(activate(V1)), activate(V2)) U15(tt, V2) -> U16(isNat(activate(V2))) U16(tt) -> tt U21(tt, V1) -> U22(isNatKind(activate(V1)), activate(V1)) U22(tt, V1) -> U23(isNat(activate(V1))) U23(tt) -> tt U31(tt, V1, V2) -> U32(isNatKind(activate(V1)), activate(V1), activate(V2)) U32(tt, V1, V2) -> U33(isNatKind(activate(V2)), activate(V1), activate(V2)) U33(tt, V1, V2) -> U34(isNatKind(activate(V2)), activate(V1), activate(V2)) U34(tt, V1, V2) -> U35(isNat(activate(V1)), activate(V2)) U35(tt, V2) -> U36(isNat(activate(V2))) U36(tt) -> tt U41(tt, V2) -> U42(isNatKind(activate(V2))) U42(tt) -> tt U51(tt) -> tt U61(tt, V2) -> U62(isNatKind(activate(V2))) U62(tt) -> tt U71(tt, N) -> U72(isNatKind(activate(N)), activate(N)) U72(tt, N) -> activate(N) U81(tt, M, N) -> U82(isNatKind(activate(M)), activate(M), activate(N)) U82(tt, M, N) -> U83(isNat(activate(N)), activate(M), activate(N)) U83(tt, M, N) -> U84(isNatKind(activate(N)), activate(M), activate(N)) U84(tt, M, N) -> s(plus(activate(N), activate(M))) U91(tt, N) -> U92(isNatKind(activate(N))) U92(tt) -> 0 isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNatKind(activate(V1)), activate(V1), activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)), activate(V1)) isNat(n__x(V1, V2)) -> U31(isNatKind(activate(V1)), activate(V1), activate(V2)) isNatKind(n__0) -> tt isNatKind(n__plus(V1, V2)) -> U41(isNatKind(activate(V1)), activate(V2)) isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1))) isNatKind(n__x(V1, V2)) -> U61(isNatKind(activate(V1)), activate(V2)) plus(N, 0) -> U71(isNat(N), N) plus(N, s(M)) -> U81(isNat(M), M, N) x(N, 0) -> U91(isNat(N), N) x(N, s(M)) -> U101(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__s(X)) ->^+ s(activate(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / n__s(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: U101(tt, M, N) -> U102(isNatKind(activate(M)), activate(M), activate(N)) U102(tt, M, N) -> U103(isNat(activate(N)), activate(M), activate(N)) U103(tt, M, N) -> U104(isNatKind(activate(N)), activate(M), activate(N)) U104(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) U11(tt, V1, V2) -> U12(isNatKind(activate(V1)), activate(V1), activate(V2)) U12(tt, V1, V2) -> U13(isNatKind(activate(V2)), activate(V1), activate(V2)) U13(tt, V1, V2) -> U14(isNatKind(activate(V2)), activate(V1), activate(V2)) U14(tt, V1, V2) -> U15(isNat(activate(V1)), activate(V2)) U15(tt, V2) -> U16(isNat(activate(V2))) U16(tt) -> tt U21(tt, V1) -> U22(isNatKind(activate(V1)), activate(V1)) U22(tt, V1) -> U23(isNat(activate(V1))) U23(tt) -> tt U31(tt, V1, V2) -> U32(isNatKind(activate(V1)), activate(V1), activate(V2)) U32(tt, V1, V2) -> U33(isNatKind(activate(V2)), activate(V1), activate(V2)) U33(tt, V1, V2) -> U34(isNatKind(activate(V2)), activate(V1), activate(V2)) U34(tt, V1, V2) -> U35(isNat(activate(V1)), activate(V2)) U35(tt, V2) -> U36(isNat(activate(V2))) U36(tt) -> tt U41(tt, V2) -> U42(isNatKind(activate(V2))) U42(tt) -> tt U51(tt) -> tt U61(tt, V2) -> U62(isNatKind(activate(V2))) U62(tt) -> tt U71(tt, N) -> U72(isNatKind(activate(N)), activate(N)) U72(tt, N) -> activate(N) U81(tt, M, N) -> U82(isNatKind(activate(M)), activate(M), activate(N)) U82(tt, M, N) -> U83(isNat(activate(N)), activate(M), activate(N)) U83(tt, M, N) -> U84(isNatKind(activate(N)), activate(M), activate(N)) U84(tt, M, N) -> s(plus(activate(N), activate(M))) U91(tt, N) -> U92(isNatKind(activate(N))) U92(tt) -> 0 isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNatKind(activate(V1)), activate(V1), activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)), activate(V1)) isNat(n__x(V1, V2)) -> U31(isNatKind(activate(V1)), activate(V1), activate(V2)) isNatKind(n__0) -> tt isNatKind(n__plus(V1, V2)) -> U41(isNatKind(activate(V1)), activate(V2)) isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1))) isNatKind(n__x(V1, V2)) -> U61(isNatKind(activate(V1)), activate(V2)) plus(N, 0) -> U71(isNat(N), N) plus(N, s(M)) -> U81(isNat(M), M, N) x(N, 0) -> U91(isNat(N), N) x(N, s(M)) -> U101(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: U101(tt, M, N) -> U102(isNatKind(activate(M)), activate(M), activate(N)) U102(tt, M, N) -> U103(isNat(activate(N)), activate(M), activate(N)) U103(tt, M, N) -> U104(isNatKind(activate(N)), activate(M), activate(N)) U104(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) U11(tt, V1, V2) -> U12(isNatKind(activate(V1)), activate(V1), activate(V2)) U12(tt, V1, V2) -> U13(isNatKind(activate(V2)), activate(V1), activate(V2)) U13(tt, V1, V2) -> U14(isNatKind(activate(V2)), activate(V1), activate(V2)) U14(tt, V1, V2) -> U15(isNat(activate(V1)), activate(V2)) U15(tt, V2) -> U16(isNat(activate(V2))) U16(tt) -> tt U21(tt, V1) -> U22(isNatKind(activate(V1)), activate(V1)) U22(tt, V1) -> U23(isNat(activate(V1))) U23(tt) -> tt U31(tt, V1, V2) -> U32(isNatKind(activate(V1)), activate(V1), activate(V2)) U32(tt, V1, V2) -> U33(isNatKind(activate(V2)), activate(V1), activate(V2)) U33(tt, V1, V2) -> U34(isNatKind(activate(V2)), activate(V1), activate(V2)) U34(tt, V1, V2) -> U35(isNat(activate(V1)), activate(V2)) U35(tt, V2) -> U36(isNat(activate(V2))) U36(tt) -> tt U41(tt, V2) -> U42(isNatKind(activate(V2))) U42(tt) -> tt U51(tt) -> tt U61(tt, V2) -> U62(isNatKind(activate(V2))) U62(tt) -> tt U71(tt, N) -> U72(isNatKind(activate(N)), activate(N)) U72(tt, N) -> activate(N) U81(tt, M, N) -> U82(isNatKind(activate(M)), activate(M), activate(N)) U82(tt, M, N) -> U83(isNat(activate(N)), activate(M), activate(N)) U83(tt, M, N) -> U84(isNatKind(activate(N)), activate(M), activate(N)) U84(tt, M, N) -> s(plus(activate(N), activate(M))) U91(tt, N) -> U92(isNatKind(activate(N))) U92(tt) -> 0 isNat(n__0) -> tt isNat(n__plus(V1, V2)) -> U11(isNatKind(activate(V1)), activate(V1), activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)), activate(V1)) isNat(n__x(V1, V2)) -> U31(isNatKind(activate(V1)), activate(V1), activate(V2)) isNatKind(n__0) -> tt isNatKind(n__plus(V1, V2)) -> U41(isNatKind(activate(V1)), activate(V2)) isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1))) isNatKind(n__x(V1, V2)) -> U61(isNatKind(activate(V1)), activate(V2)) plus(N, 0) -> U71(isNat(N), N) plus(N, s(M)) -> U81(isNat(M), M, N) x(N, 0) -> U91(isNat(N), N) x(N, s(M)) -> U101(isNat(M), M, N) 0 -> n__0 plus(X1, X2) -> n__plus(X1, X2) s(X) -> n__s(X) x(X1, X2) -> n__x(X1, X2) activate(n__0) -> 0 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) activate(n__s(X)) -> s(activate(X)) activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence activate(n__x(X1, n__s(X1_0))) ->^+ U101(isNat(activate(X1_0)), activate(X1_0), activate(X1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [X1_0 / n__x(X1, n__s(X1_0))]. The result substitution is [ ]. The rewrite sequence activate(n__x(X1, n__s(X1_0))) ->^+ U101(isNat(activate(X1_0)), activate(X1_0), activate(X1)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [X1_0 / n__x(X1, n__s(X1_0))]. The result substitution is [ ]. ---------------------------------------- (10) BOUNDS(EXP, INF)