/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 62 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 433 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 94 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 124 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(minus(0, Y)) -> mark(0) active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0)) -> mark(true) active(geq(0, s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0, s(Y))) -> mark(0) active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 true0() -> 0 false0() -> 0 active0(0) -> 0 s0(0) -> 1 div0(0, 0) -> 2 if0(0, 0, 0) -> 3 proper0(0) -> 4 minus0(0, 0) -> 5 geq0(0, 0) -> 6 top0(0) -> 7 s1(0) -> 8 mark1(8) -> 1 div1(0, 0) -> 9 mark1(9) -> 2 if1(0, 0, 0) -> 10 mark1(10) -> 3 01() -> 11 ok1(11) -> 4 true1() -> 12 ok1(12) -> 4 false1() -> 13 ok1(13) -> 4 minus1(0, 0) -> 14 ok1(14) -> 5 s1(0) -> 15 ok1(15) -> 1 geq1(0, 0) -> 16 ok1(16) -> 6 div1(0, 0) -> 17 ok1(17) -> 2 if1(0, 0, 0) -> 18 ok1(18) -> 3 proper1(0) -> 19 top1(19) -> 7 active1(0) -> 20 top1(20) -> 7 mark1(8) -> 8 mark1(8) -> 15 mark1(9) -> 9 mark1(9) -> 17 mark1(10) -> 10 mark1(10) -> 18 ok1(11) -> 19 ok1(12) -> 19 ok1(13) -> 19 ok1(14) -> 14 ok1(15) -> 8 ok1(15) -> 15 ok1(16) -> 16 ok1(17) -> 9 ok1(17) -> 17 ok1(18) -> 10 ok1(18) -> 18 active2(11) -> 21 top2(21) -> 7 active2(12) -> 21 active2(13) -> 21 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok minus :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok geq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok div :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, minus, geq, if, s, div, proper, top They will be analysed ascendingly in the following order: minus < active geq < active if < active s < active div < active active < top minus < proper geq < proper if < proper s < proper div < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok minus :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok geq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok div :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: minus, active, geq, if, s, div, proper, top They will be analysed ascendingly in the following order: minus < active geq < active if < active s < active div < active active < top minus < proper geq < proper if < proper s < proper div < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: if(gen_0':mark:true:false:ok3_0(+(1, n15_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n15_0) Induction Base: if(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) Induction Step: if(gen_0':mark:true:false:ok3_0(+(1, +(n15_0, 1))), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) ->_R^Omega(1) mark(if(gen_0':mark:true:false:ok3_0(+(1, n15_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok minus :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok geq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok div :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: if, active, s, div, proper, top They will be analysed ascendingly in the following order: if < active s < active div < active active < top if < proper s < proper div < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok minus :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok geq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok div :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n15_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n15_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: s, active, div, proper, top They will be analysed ascendingly in the following order: s < active div < active active < top s < proper div < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_0':mark:true:false:ok3_0(+(1, n1368_0))) -> *4_0, rt in Omega(n1368_0) Induction Base: s(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: s(gen_0':mark:true:false:ok3_0(+(1, +(n1368_0, 1)))) ->_R^Omega(1) mark(s(gen_0':mark:true:false:ok3_0(+(1, n1368_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok minus :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok geq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok div :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n15_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n15_0) s(gen_0':mark:true:false:ok3_0(+(1, n1368_0))) -> *4_0, rt in Omega(n1368_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: div, active, proper, top They will be analysed ascendingly in the following order: div < active active < top div < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: div(gen_0':mark:true:false:ok3_0(+(1, n1924_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n1924_0) Induction Base: div(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b)) Induction Step: div(gen_0':mark:true:false:ok3_0(+(1, +(n1924_0, 1))), gen_0':mark:true:false:ok3_0(b)) ->_R^Omega(1) mark(div(gen_0':mark:true:false:ok3_0(+(1, n1924_0)), gen_0':mark:true:false:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(minus(0', Y)) -> mark(0') active(minus(s(X), s(Y))) -> mark(minus(X, Y)) active(geq(X, 0')) -> mark(true) active(geq(0', s(Y))) -> mark(false) active(geq(s(X), s(Y))) -> mark(geq(X, Y)) active(div(0', s(Y))) -> mark(0') active(div(s(X), s(Y))) -> mark(if(geq(X, Y), s(div(minus(X, Y), s(Y))), 0')) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(s(X)) -> s(active(X)) active(div(X1, X2)) -> div(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) s(mark(X)) -> mark(s(X)) div(mark(X1), X2) -> mark(div(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) proper(minus(X1, X2)) -> minus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(geq(X1, X2)) -> geq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(div(X1, X2)) -> div(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) minus(ok(X1), ok(X2)) -> ok(minus(X1, X2)) s(ok(X)) -> ok(s(X)) geq(ok(X1), ok(X2)) -> ok(geq(X1, X2)) div(ok(X1), ok(X2)) -> ok(div(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok minus :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok geq :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok div :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n15_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n15_0) s(gen_0':mark:true:false:ok3_0(+(1, n1368_0))) -> *4_0, rt in Omega(n1368_0) div(gen_0':mark:true:false:ok3_0(+(1, n1924_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n1924_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top