/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 605 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(and(tt, X)) -> mark(X) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) active(cons(X1, X2)) -> cons(active(X1), X2) active(and(X1, X2)) -> and(active(X1), X2) active(length(X)) -> length(active(X)) active(s(X)) -> s(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) proper(s(X)) -> s(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of cons: active, proper, cons The following defined symbols can occur below the 1th argument of cons: active, proper, cons The following defined symbols can occur below the 0th argument of top: active, proper, cons The following defined symbols can occur below the 0th argument of proper: active, proper, cons The following defined symbols can occur below the 0th argument of active: active, proper, cons Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(and(tt, X)) -> mark(X) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) active(and(X1, X2)) -> and(active(X1), X2) active(length(X)) -> length(active(X)) active(s(X)) -> s(active(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(length(X)) -> length(proper(X)) proper(s(X)) -> s(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(cons(X1, X2)) -> cons(active(X1), X2) cons(mark(X1), X2) -> mark(cons(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tt) -> ok(tt) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(cons(X1, X2)) -> cons(active(X1), X2) cons(mark(X1), X2) -> mark(cons(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tt) -> ok(tt) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 5. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: zeros0() -> 0 mark0(0) -> 0 00() -> 0 ok0(0) -> 0 tt0() -> 0 nil0() -> 0 active0(0) -> 1 cons0(0, 0) -> 2 and0(0, 0) -> 3 length0(0) -> 4 s0(0) -> 5 proper0(0) -> 6 top0(0) -> 7 01() -> 9 zeros1() -> 10 cons1(9, 10) -> 8 mark1(8) -> 1 cons1(0, 0) -> 11 mark1(11) -> 2 and1(0, 0) -> 12 mark1(12) -> 3 length1(0) -> 13 mark1(13) -> 4 s1(0) -> 14 mark1(14) -> 5 zeros1() -> 15 ok1(15) -> 6 01() -> 16 ok1(16) -> 6 tt1() -> 17 ok1(17) -> 6 nil1() -> 18 ok1(18) -> 6 cons1(0, 0) -> 19 ok1(19) -> 2 and1(0, 0) -> 20 ok1(20) -> 3 length1(0) -> 21 ok1(21) -> 4 s1(0) -> 22 ok1(22) -> 5 proper1(0) -> 23 top1(23) -> 7 active1(0) -> 24 top1(24) -> 7 mark1(8) -> 24 mark1(11) -> 11 mark1(11) -> 19 mark1(12) -> 12 mark1(12) -> 20 mark1(13) -> 13 mark1(13) -> 21 mark1(14) -> 14 mark1(14) -> 22 ok1(15) -> 23 ok1(16) -> 23 ok1(17) -> 23 ok1(18) -> 23 ok1(19) -> 11 ok1(19) -> 19 ok1(20) -> 12 ok1(20) -> 20 ok1(21) -> 13 ok1(21) -> 21 ok1(22) -> 14 ok1(22) -> 22 proper2(8) -> 25 top2(25) -> 7 active2(15) -> 26 top2(26) -> 7 active2(16) -> 26 active2(17) -> 26 active2(18) -> 26 02() -> 28 zeros2() -> 29 cons2(28, 29) -> 27 mark2(27) -> 26 proper2(9) -> 30 proper2(10) -> 31 cons2(30, 31) -> 25 zeros2() -> 32 ok2(32) -> 31 02() -> 33 ok2(33) -> 30 proper3(27) -> 34 top3(34) -> 7 proper3(28) -> 35 proper3(29) -> 36 cons3(35, 36) -> 34 cons3(33, 32) -> 37 ok3(37) -> 25 zeros3() -> 38 ok3(38) -> 36 03() -> 39 ok3(39) -> 35 active3(37) -> 40 top3(40) -> 7 cons4(39, 38) -> 41 ok4(41) -> 34 active4(33) -> 42 cons4(42, 32) -> 40 active4(41) -> 43 top4(43) -> 7 active5(39) -> 44 cons5(44, 38) -> 43 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(and(tt, X)) -> mark(X) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) active(cons(X1, X2)) -> cons(active(X1), X2) active(and(X1, X2)) -> and(active(X1), X2) active(length(X)) -> length(active(X)) active(s(X)) -> s(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) proper(s(X)) -> s(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence s(mark(X)) ->^+ mark(s(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / mark(X)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(and(tt, X)) -> mark(X) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) active(cons(X1, X2)) -> cons(active(X1), X2) active(and(X1, X2)) -> and(active(X1), X2) active(length(X)) -> length(active(X)) active(s(X)) -> s(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) proper(s(X)) -> s(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(and(tt, X)) -> mark(X) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(s(length(L))) active(cons(X1, X2)) -> cons(active(X1), X2) active(and(X1, X2)) -> and(active(X1), X2) active(length(X)) -> length(active(X)) active(s(X)) -> s(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) and(mark(X1), X2) -> mark(and(X1, X2)) length(mark(X)) -> mark(length(X)) s(mark(X)) -> mark(s(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) proper(s(X)) -> s(proper(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) length(ok(X)) -> ok(length(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL