/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 57 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 2 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(a, X, X) -> a__f(X, a__b, b) a__b -> a mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(b) -> a__b mark(a) -> a a__f(X1, X2, X3) -> f(X1, X2, X3) a__b -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__f(a, X, X) -> a__f(X, a__b, b) a__b -> a mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(b) -> a__b mark(a) -> a a__f(X1, X2, X3) -> f(X1, X2, X3) a__b -> b S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: a__f(a, z0, z0) -> a__f(z0, a__b, b) a__f(z0, z1, z2) -> f(z0, z1, z2) a__b -> a a__b -> b mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(b) -> a__b mark(a) -> a Tuples: A__F(a, z0, z0) -> c(A__F(z0, a__b, b), A__B) A__F(z0, z1, z2) -> c1 A__B -> c2 A__B -> c3 MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) MARK(b) -> c5(A__B) MARK(a) -> c6 S tuples: A__F(a, z0, z0) -> c(A__F(z0, a__b, b), A__B) A__F(z0, z1, z2) -> c1 A__B -> c2 A__B -> c3 MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) MARK(b) -> c5(A__B) MARK(a) -> c6 K tuples:none Defined Rule Symbols: a__f_3, a__b, mark_1 Defined Pair Symbols: A__F_3, A__B, MARK_1 Compound Symbols: c_2, c1, c2, c3, c4_2, c5_1, c6 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: MARK(a) -> c6 A__B -> c2 A__F(z0, z1, z2) -> c1 A__B -> c3 MARK(b) -> c5(A__B) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: a__f(a, z0, z0) -> a__f(z0, a__b, b) a__f(z0, z1, z2) -> f(z0, z1, z2) a__b -> a a__b -> b mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(b) -> a__b mark(a) -> a Tuples: A__F(a, z0, z0) -> c(A__F(z0, a__b, b), A__B) MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) S tuples: A__F(a, z0, z0) -> c(A__F(z0, a__b, b), A__B) MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) K tuples:none Defined Rule Symbols: a__f_3, a__b, mark_1 Defined Pair Symbols: A__F_3, MARK_1 Compound Symbols: c_2, c4_2 ---------------------------------------- (7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: a__f(a, z0, z0) -> a__f(z0, a__b, b) a__f(z0, z1, z2) -> f(z0, z1, z2) a__b -> a a__b -> b mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(b) -> a__b mark(a) -> a Tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) S tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) K tuples:none Defined Rule Symbols: a__f_3, a__b, mark_1 Defined Pair Symbols: MARK_1, A__F_3 Compound Symbols: c4_2, c_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) We considered the (Usable) Rules:none And the Tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1, x_2, x_3)) = x_1 + x_3 POL(MARK(x_1)) = x_1 POL(a) = [1] POL(a__b) = [1] POL(a__f(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(b) = 0 POL(c(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(f(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = [1] + x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: a__f(a, z0, z0) -> a__f(z0, a__b, b) a__f(z0, z1, z2) -> f(z0, z1, z2) a__b -> a a__b -> b mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(b) -> a__b mark(a) -> a Tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) S tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) K tuples: A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) Defined Rule Symbols: a__f_3, a__b, mark_1 Defined Pair Symbols: MARK_1, A__F_3 Compound Symbols: c4_2, c_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) We considered the (Usable) Rules:none And the Tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A__F(x_1, x_2, x_3)) = x_1 + x_3 POL(MARK(x_1)) = x_1 POL(a) = [1] POL(a__b) = [1] POL(a__f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(b) = 0 POL(c(x_1)) = x_1 POL(c4(x_1, x_2)) = x_1 + x_2 POL(f(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(mark(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: a__f(a, z0, z0) -> a__f(z0, a__b, b) a__f(z0, z1, z2) -> f(z0, z1, z2) a__b -> a a__b -> b mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(b) -> a__b mark(a) -> a Tuples: MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) S tuples:none K tuples: A__F(a, z0, z0) -> c(A__F(z0, a__b, b)) MARK(f(z0, z1, z2)) -> c4(A__F(z0, mark(z1), z2), MARK(z1)) Defined Rule Symbols: a__f_3, a__b, mark_1 Defined Pair Symbols: MARK_1, A__F_3 Compound Symbols: c4_2, c_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(a, X, X) -> a__f(X, a__b, b) a__b -> a mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(b) -> a__b mark(a) -> a a__f(X1, X2, X3) -> f(X1, X2, X3) a__b -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(f(X1, X2, X3)) ->^+ a__f(X1, mark(X2), X3) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [X2 / f(X1, X2, X3)]. The result substitution is [ ]. ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(a, X, X) -> a__f(X, a__b, b) a__b -> a mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(b) -> a__b mark(a) -> a a__f(X1, X2, X3) -> f(X1, X2, X3) a__b -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(a, X, X) -> a__f(X, a__b, b) a__b -> a mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(b) -> a__b mark(a) -> a a__f(X1, X2, X3) -> f(X1, X2, X3) a__b -> b S is empty. Rewrite Strategy: FULL