/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 222 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(nil) -> ok(nil) proper(rnil) -> ok(rnil) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(nil) -> ok(nil) proper(rnil) -> ok(rnil) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 nil0() -> 0 rnil0() -> 0 active0(0) -> 0 s0(0) -> 1 posrecip0(0) -> 2 negrecip0(0) -> 3 cons0(0, 0) -> 4 rcons0(0, 0) -> 5 from0(0) -> 6 2ndspos0(0, 0) -> 7 2ndsneg0(0, 0) -> 8 pi0(0) -> 9 plus0(0, 0) -> 10 times0(0, 0) -> 11 square0(0) -> 12 proper0(0) -> 13 top0(0) -> 14 s1(0) -> 15 mark1(15) -> 1 posrecip1(0) -> 16 mark1(16) -> 2 negrecip1(0) -> 17 mark1(17) -> 3 cons1(0, 0) -> 18 mark1(18) -> 4 rcons1(0, 0) -> 19 mark1(19) -> 5 from1(0) -> 20 mark1(20) -> 6 2ndspos1(0, 0) -> 21 mark1(21) -> 7 2ndsneg1(0, 0) -> 22 mark1(22) -> 8 pi1(0) -> 23 mark1(23) -> 9 plus1(0, 0) -> 24 mark1(24) -> 10 times1(0, 0) -> 25 mark1(25) -> 11 square1(0) -> 26 mark1(26) -> 12 01() -> 27 ok1(27) -> 13 nil1() -> 28 ok1(28) -> 13 rnil1() -> 29 ok1(29) -> 13 s1(0) -> 30 ok1(30) -> 1 posrecip1(0) -> 31 ok1(31) -> 2 negrecip1(0) -> 32 ok1(32) -> 3 cons1(0, 0) -> 33 ok1(33) -> 4 rcons1(0, 0) -> 34 ok1(34) -> 5 from1(0) -> 35 ok1(35) -> 6 2ndspos1(0, 0) -> 36 ok1(36) -> 7 2ndsneg1(0, 0) -> 37 ok1(37) -> 8 pi1(0) -> 38 ok1(38) -> 9 plus1(0, 0) -> 39 ok1(39) -> 10 times1(0, 0) -> 40 ok1(40) -> 11 square1(0) -> 41 ok1(41) -> 12 proper1(0) -> 42 top1(42) -> 14 active1(0) -> 43 top1(43) -> 14 mark1(15) -> 15 mark1(15) -> 30 mark1(16) -> 16 mark1(16) -> 31 mark1(17) -> 17 mark1(17) -> 32 mark1(18) -> 18 mark1(18) -> 33 mark1(19) -> 19 mark1(19) -> 34 mark1(20) -> 20 mark1(20) -> 35 mark1(21) -> 21 mark1(21) -> 36 mark1(22) -> 22 mark1(22) -> 37 mark1(23) -> 23 mark1(23) -> 38 mark1(24) -> 24 mark1(24) -> 39 mark1(25) -> 25 mark1(25) -> 40 mark1(26) -> 26 mark1(26) -> 41 ok1(27) -> 42 ok1(28) -> 42 ok1(29) -> 42 ok1(30) -> 15 ok1(30) -> 30 ok1(31) -> 16 ok1(31) -> 31 ok1(32) -> 17 ok1(32) -> 32 ok1(33) -> 18 ok1(33) -> 33 ok1(34) -> 19 ok1(34) -> 34 ok1(35) -> 20 ok1(35) -> 35 ok1(36) -> 21 ok1(36) -> 36 ok1(37) -> 22 ok1(37) -> 37 ok1(38) -> 23 ok1(38) -> 38 ok1(39) -> 24 ok1(39) -> 39 ok1(40) -> 25 ok1(40) -> 40 ok1(41) -> 26 ok1(41) -> 41 active2(27) -> 44 top2(44) -> 14 active2(28) -> 44 active2(29) -> 44 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence times(ok(X1), ok(X2)) ->^+ ok(times(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / ok(X1), X2 / ok(X2)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(2ndspos(0, Z)) -> mark(rnil) active(2ndspos(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(posrecip(Y), 2ndsneg(N, Z))) active(2ndsneg(0, Z)) -> mark(rnil) active(2ndsneg(s(N), cons(X, cons(Y, Z)))) -> mark(rcons(negrecip(Y), 2ndspos(N, Z))) active(pi(X)) -> mark(2ndspos(X, from(0))) active(plus(0, Y)) -> mark(Y) active(plus(s(X), Y)) -> mark(s(plus(X, Y))) active(times(0, Y)) -> mark(0) active(times(s(X), Y)) -> mark(plus(Y, times(X, Y))) active(square(X)) -> mark(times(X, X)) active(s(X)) -> s(active(X)) active(posrecip(X)) -> posrecip(active(X)) active(negrecip(X)) -> negrecip(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(rcons(X1, X2)) -> rcons(active(X1), X2) active(rcons(X1, X2)) -> rcons(X1, active(X2)) active(from(X)) -> from(active(X)) active(2ndspos(X1, X2)) -> 2ndspos(active(X1), X2) active(2ndspos(X1, X2)) -> 2ndspos(X1, active(X2)) active(2ndsneg(X1, X2)) -> 2ndsneg(active(X1), X2) active(2ndsneg(X1, X2)) -> 2ndsneg(X1, active(X2)) active(pi(X)) -> pi(active(X)) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(times(X1, X2)) -> times(active(X1), X2) active(times(X1, X2)) -> times(X1, active(X2)) active(square(X)) -> square(active(X)) s(mark(X)) -> mark(s(X)) posrecip(mark(X)) -> mark(posrecip(X)) negrecip(mark(X)) -> mark(negrecip(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) rcons(mark(X1), X2) -> mark(rcons(X1, X2)) rcons(X1, mark(X2)) -> mark(rcons(X1, X2)) from(mark(X)) -> mark(from(X)) 2ndspos(mark(X1), X2) -> mark(2ndspos(X1, X2)) 2ndspos(X1, mark(X2)) -> mark(2ndspos(X1, X2)) 2ndsneg(mark(X1), X2) -> mark(2ndsneg(X1, X2)) 2ndsneg(X1, mark(X2)) -> mark(2ndsneg(X1, X2)) pi(mark(X)) -> mark(pi(X)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) times(mark(X1), X2) -> mark(times(X1, X2)) times(X1, mark(X2)) -> mark(times(X1, X2)) square(mark(X)) -> mark(square(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(posrecip(X)) -> posrecip(proper(X)) proper(negrecip(X)) -> negrecip(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(rnil) -> ok(rnil) proper(rcons(X1, X2)) -> rcons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(2ndspos(X1, X2)) -> 2ndspos(proper(X1), proper(X2)) proper(2ndsneg(X1, X2)) -> 2ndsneg(proper(X1), proper(X2)) proper(pi(X)) -> pi(proper(X)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(times(X1, X2)) -> times(proper(X1), proper(X2)) proper(square(X)) -> square(proper(X)) s(ok(X)) -> ok(s(X)) posrecip(ok(X)) -> ok(posrecip(X)) negrecip(ok(X)) -> ok(negrecip(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) rcons(ok(X1), ok(X2)) -> ok(rcons(X1, X2)) from(ok(X)) -> ok(from(X)) 2ndspos(ok(X1), ok(X2)) -> ok(2ndspos(X1, X2)) 2ndsneg(ok(X1), ok(X2)) -> ok(2ndsneg(X1, X2)) pi(ok(X)) -> ok(pi(X)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) times(ok(X1), ok(X2)) -> ok(times(X1, X2)) square(ok(X)) -> ok(square(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL