/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 65 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(inf(X)) -> inf(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(length(X)) -> length(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) proper(nil) -> ok(nil) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) proper(nil) -> ok(nil) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 true0() -> 0 false0() -> 0 nil0() -> 0 active0(0) -> 0 inf0(0) -> 1 take0(0, 0) -> 2 length0(0) -> 3 proper0(0) -> 4 eq0(0, 0) -> 5 s0(0) -> 6 cons0(0, 0) -> 7 top0(0) -> 8 inf1(0) -> 9 mark1(9) -> 1 take1(0, 0) -> 10 mark1(10) -> 2 length1(0) -> 11 mark1(11) -> 3 01() -> 12 ok1(12) -> 4 true1() -> 13 ok1(13) -> 4 false1() -> 14 ok1(14) -> 4 nil1() -> 15 ok1(15) -> 4 eq1(0, 0) -> 16 ok1(16) -> 5 s1(0) -> 17 ok1(17) -> 6 inf1(0) -> 18 ok1(18) -> 1 cons1(0, 0) -> 19 ok1(19) -> 7 take1(0, 0) -> 20 ok1(20) -> 2 length1(0) -> 21 ok1(21) -> 3 proper1(0) -> 22 top1(22) -> 8 active1(0) -> 23 top1(23) -> 8 mark1(9) -> 9 mark1(9) -> 18 mark1(10) -> 10 mark1(10) -> 20 mark1(11) -> 11 mark1(11) -> 21 ok1(12) -> 22 ok1(13) -> 22 ok1(14) -> 22 ok1(15) -> 22 ok1(16) -> 16 ok1(17) -> 17 ok1(18) -> 9 ok1(18) -> 18 ok1(19) -> 19 ok1(20) -> 10 ok1(20) -> 20 ok1(21) -> 11 ok1(21) -> 21 active2(12) -> 24 top2(24) -> 8 active2(13) -> 24 active2(14) -> 24 active2(15) -> 24 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence take(ok(X1), ok(X2)) ->^+ ok(take(X1, X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / ok(X1), X2 / ok(X2)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(eq(0, 0)) -> mark(true) active(eq(s(X), s(Y))) -> mark(eq(X, Y)) active(eq(X, Y)) -> mark(false) active(inf(X)) -> mark(cons(X, inf(s(X)))) active(take(0, X)) -> mark(nil) active(take(s(X), cons(Y, L))) -> mark(cons(Y, take(X, L))) active(length(nil)) -> mark(0) active(length(cons(X, L))) -> mark(s(length(L))) active(inf(X)) -> inf(active(X)) active(take(X1, X2)) -> take(active(X1), X2) active(take(X1, X2)) -> take(X1, active(X2)) active(length(X)) -> length(active(X)) inf(mark(X)) -> mark(inf(X)) take(mark(X1), X2) -> mark(take(X1, X2)) take(X1, mark(X2)) -> mark(take(X1, X2)) length(mark(X)) -> mark(length(X)) proper(eq(X1, X2)) -> eq(proper(X1), proper(X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(s(X)) -> s(proper(X)) proper(false) -> ok(false) proper(inf(X)) -> inf(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(take(X1, X2)) -> take(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(length(X)) -> length(proper(X)) eq(ok(X1), ok(X2)) -> ok(eq(X1, X2)) s(ok(X)) -> ok(s(X)) inf(ok(X)) -> ok(inf(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) take(ok(X1), ok(X2)) -> ok(take(X1, X2)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL