/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 209 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 75 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0) -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0) -> 0 x(N, s(M)) -> U21(tt, M, N) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0') -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0') -> 0' x(N, s(M)) -> U21(tt, M, N) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0') -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0') -> 0' x(N, s(M)) -> U21(tt, M, N) activate(X) -> X Types: U11 :: tt -> s:0' -> s:0' -> s:0' tt :: tt U12 :: tt -> s:0' -> s:0' -> s:0' activate :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' U21 :: tt -> s:0' -> s:0' -> s:0' U22 :: tt -> s:0' -> s:0' -> s:0' x :: s:0' -> s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' hole_tt2_0 :: tt gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: plus, x They will be analysed ascendingly in the following order: plus < x ---------------------------------------- (6) Obligation: TRS: Rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0') -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0') -> 0' x(N, s(M)) -> U21(tt, M, N) activate(X) -> X Types: U11 :: tt -> s:0' -> s:0' -> s:0' tt :: tt U12 :: tt -> s:0' -> s:0' -> s:0' activate :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' U21 :: tt -> s:0' -> s:0' -> s:0' U22 :: tt -> s:0' -> s:0' -> s:0' x :: s:0' -> s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' hole_tt2_0 :: tt gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: plus, x They will be analysed ascendingly in the following order: plus < x ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) Induction Base: plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) ->_R^Omega(1) gen_s:0'3_0(a) Induction Step: plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n5_0, 1))) ->_R^Omega(1) U11(tt, gen_s:0'3_0(n5_0), gen_s:0'3_0(a)) ->_R^Omega(1) U12(tt, activate(gen_s:0'3_0(n5_0)), activate(gen_s:0'3_0(a))) ->_R^Omega(1) U12(tt, gen_s:0'3_0(n5_0), activate(gen_s:0'3_0(a))) ->_R^Omega(1) U12(tt, gen_s:0'3_0(n5_0), gen_s:0'3_0(a)) ->_R^Omega(1) s(plus(activate(gen_s:0'3_0(a)), activate(gen_s:0'3_0(n5_0)))) ->_R^Omega(1) s(plus(gen_s:0'3_0(a), activate(gen_s:0'3_0(n5_0)))) ->_R^Omega(1) s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0))) ->_IH s(gen_s:0'3_0(+(a, c6_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0') -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0') -> 0' x(N, s(M)) -> U21(tt, M, N) activate(X) -> X Types: U11 :: tt -> s:0' -> s:0' -> s:0' tt :: tt U12 :: tt -> s:0' -> s:0' -> s:0' activate :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' U21 :: tt -> s:0' -> s:0' -> s:0' U22 :: tt -> s:0' -> s:0' -> s:0' x :: s:0' -> s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' hole_tt2_0 :: tt gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: plus, x They will be analysed ascendingly in the following order: plus < x ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0') -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0') -> 0' x(N, s(M)) -> U21(tt, M, N) activate(X) -> X Types: U11 :: tt -> s:0' -> s:0' -> s:0' tt :: tt U12 :: tt -> s:0' -> s:0' -> s:0' activate :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' U21 :: tt -> s:0' -> s:0' -> s:0' U22 :: tt -> s:0' -> s:0' -> s:0' x :: s:0' -> s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' hole_tt2_0 :: tt gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: x ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: x(gen_s:0'3_0(a), gen_s:0'3_0(n580_0)) -> gen_s:0'3_0(*(n580_0, a)), rt in Omega(1 + a*n580_0 + n580_0) Induction Base: x(gen_s:0'3_0(a), gen_s:0'3_0(0)) ->_R^Omega(1) 0' Induction Step: x(gen_s:0'3_0(a), gen_s:0'3_0(+(n580_0, 1))) ->_R^Omega(1) U21(tt, gen_s:0'3_0(n580_0), gen_s:0'3_0(a)) ->_R^Omega(1) U22(tt, activate(gen_s:0'3_0(n580_0)), activate(gen_s:0'3_0(a))) ->_R^Omega(1) U22(tt, gen_s:0'3_0(n580_0), activate(gen_s:0'3_0(a))) ->_R^Omega(1) U22(tt, gen_s:0'3_0(n580_0), gen_s:0'3_0(a)) ->_R^Omega(1) plus(x(activate(gen_s:0'3_0(a)), activate(gen_s:0'3_0(n580_0))), activate(gen_s:0'3_0(a))) ->_R^Omega(1) plus(x(gen_s:0'3_0(a), activate(gen_s:0'3_0(n580_0))), activate(gen_s:0'3_0(a))) ->_R^Omega(1) plus(x(gen_s:0'3_0(a), gen_s:0'3_0(n580_0)), activate(gen_s:0'3_0(a))) ->_IH plus(gen_s:0'3_0(*(c581_0, a)), activate(gen_s:0'3_0(a))) ->_R^Omega(1) plus(gen_s:0'3_0(*(n580_0, a)), gen_s:0'3_0(a)) ->_L^Omega(1 + a) gen_s:0'3_0(+(a, *(n580_0, a))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: U11(tt, M, N) -> U12(tt, activate(M), activate(N)) U12(tt, M, N) -> s(plus(activate(N), activate(M))) U21(tt, M, N) -> U22(tt, activate(M), activate(N)) U22(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) plus(N, 0') -> N plus(N, s(M)) -> U11(tt, M, N) x(N, 0') -> 0' x(N, s(M)) -> U21(tt, M, N) activate(X) -> X Types: U11 :: tt -> s:0' -> s:0' -> s:0' tt :: tt U12 :: tt -> s:0' -> s:0' -> s:0' activate :: s:0' -> s:0' s :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' U21 :: tt -> s:0' -> s:0' -> s:0' U22 :: tt -> s:0' -> s:0' -> s:0' x :: s:0' -> s:0' -> s:0' 0' :: s:0' hole_s:0'1_0 :: s:0' hole_tt2_0 :: tt gen_s:0'3_0 :: Nat -> s:0' Lemmas: plus(gen_s:0'3_0(a), gen_s:0'3_0(n5_0)) -> gen_s:0'3_0(+(n5_0, a)), rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: x ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^2, INF)