/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) * Step 1: Sum. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2nd(cons(X,n__cons(Y,Z))) -> activate(Y) activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {2nd/1,activate/1,cons/2,from/1} / {n__cons/2,n__from/1,s/1} - Obligation: runtime complexity wrt. defined symbols {2nd,activate,cons,from} and constructors {n__cons,n__from,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2nd(cons(X,n__cons(Y,Z))) -> activate(Y) activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {2nd/1,activate/1,cons/2,from/1} / {n__cons/2,n__from/1,s/1} - Obligation: runtime complexity wrt. defined symbols {2nd,activate,cons,from} and constructors {n__cons,n__from,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs 2nd#(cons(X,n__cons(Y,Z))) -> c_1(activate#(Y)) activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) Weak DPs and mark the set of starting terms. * Step 3: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2nd#(cons(X,n__cons(Y,Z))) -> c_1(activate#(Y)) activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Strict TRS: 2nd(cons(X,n__cons(Y,Z))) -> activate(Y) activate(X) -> X activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) cons(X1,X2) -> n__cons(X1,X2) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) * Step 4: PredecessorEstimationCP. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: activate#(X) -> c_2(X) 2: activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) 3: activate#(n__from(X)) -> c_4(from#(X)) 5: from#(X) -> c_6(cons#(X,n__from(s(X)))) 6: from#(X) -> c_7(X) The strictly oriented rules are moved into the weak component. ** Step 4.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(2nd) = [1] x1 + [2] p(activate) = [2] x1 + [8] p(cons) = [1] x1 + [1] x2 + [2] p(from) = [1] p(n__cons) = [1] x1 + [0] p(n__from) = [1] x1 + [3] p(s) = [1] x1 + [10] p(2nd#) = [1] x1 + [0] p(activate#) = [12] p(cons#) = [0] p(from#) = [2] p(c_1) = [1] p(c_2) = [0] p(c_3) = [1] x1 + [1] p(c_4) = [4] x1 + [1] p(c_5) = [0] p(c_6) = [2] x1 + [0] p(c_7) = [0] Following rules are strictly oriented: activate#(X) = [12] > [0] = c_2(X) activate#(n__cons(X1,X2)) = [12] > [1] = c_3(cons#(X1,X2)) activate#(n__from(X)) = [12] > [9] = c_4(from#(X)) from#(X) = [2] > [0] = c_6(cons#(X,n__from(s(X)))) from#(X) = [2] > [0] = c_7(X) Following rules are (at-least) weakly oriented: cons#(X1,X2) = [0] >= [0] = c_5(X1,X2) ** Step 4.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(X1,X2) -> c_5(X1,X2) - Weak DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () ** Step 4.b:1: PredecessorEstimationCP. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(X1,X2) -> c_5(X1,X2) - Weak DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: cons#(X1,X2) -> c_5(X1,X2) The strictly oriented rules are moved into the weak component. *** Step 4.b:1.a:1: NaturalMI. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: cons#(X1,X2) -> c_5(X1,X2) - Weak DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(2nd) = [0] p(activate) = [0] p(cons) = [2] x2 + [0] p(from) = [4] x1 + [0] p(n__cons) = [2] p(n__from) = [0] p(s) = [0] p(2nd#) = [1] x1 + [1] p(activate#) = [8] x1 + [14] p(cons#) = [3] p(from#) = [3] p(c_1) = [1] x1 + [0] p(c_2) = [8] x1 + [14] p(c_3) = [8] x1 + [6] p(c_4) = [2] x1 + [8] p(c_5) = [2] p(c_6) = [1] x1 + [0] p(c_7) = [0] Following rules are strictly oriented: cons#(X1,X2) = [3] > [2] = c_5(X1,X2) Following rules are (at-least) weakly oriented: activate#(X) = [8] X + [14] >= [8] X + [14] = c_2(X) activate#(n__cons(X1,X2)) = [30] >= [30] = c_3(cons#(X1,X2)) activate#(n__from(X)) = [14] >= [14] = c_4(from#(X)) from#(X) = [3] >= [3] = c_6(cons#(X,n__from(s(X)))) from#(X) = [3] >= [0] = c_7(X) *** Step 4.b:1.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () *** Step 4.b:1.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(X) -> c_2(X) activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) activate#(n__from(X)) -> c_4(from#(X)) cons#(X1,X2) -> c_5(X1,X2) from#(X) -> c_6(cons#(X,n__from(s(X)))) from#(X) -> c_7(X) - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:activate#(X) -> c_2(X) -->_1 from#(X) -> c_7(X):6 -->_1 from#(X) -> c_6(cons#(X,n__from(s(X)))):5 -->_1 cons#(X1,X2) -> c_5(X1,X2):4 -->_1 activate#(n__from(X)) -> c_4(from#(X)):3 -->_1 activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)):2 -->_1 activate#(X) -> c_2(X):1 2:W:activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) -->_1 cons#(X1,X2) -> c_5(X1,X2):4 3:W:activate#(n__from(X)) -> c_4(from#(X)) -->_1 from#(X) -> c_7(X):6 -->_1 from#(X) -> c_6(cons#(X,n__from(s(X)))):5 4:W:cons#(X1,X2) -> c_5(X1,X2) -->_2 from#(X) -> c_7(X):6 -->_1 from#(X) -> c_7(X):6 -->_2 from#(X) -> c_6(cons#(X,n__from(s(X)))):5 -->_1 from#(X) -> c_6(cons#(X,n__from(s(X)))):5 -->_2 cons#(X1,X2) -> c_5(X1,X2):4 -->_1 cons#(X1,X2) -> c_5(X1,X2):4 -->_2 activate#(n__from(X)) -> c_4(from#(X)):3 -->_1 activate#(n__from(X)) -> c_4(from#(X)):3 -->_2 activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)):2 -->_1 activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)):2 -->_2 activate#(X) -> c_2(X):1 -->_1 activate#(X) -> c_2(X):1 5:W:from#(X) -> c_6(cons#(X,n__from(s(X)))) -->_1 cons#(X1,X2) -> c_5(X1,X2):4 6:W:from#(X) -> c_7(X) -->_1 from#(X) -> c_7(X):6 -->_1 from#(X) -> c_6(cons#(X,n__from(s(X)))):5 -->_1 cons#(X1,X2) -> c_5(X1,X2):4 -->_1 activate#(n__from(X)) -> c_4(from#(X)):3 -->_1 activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)):2 -->_1 activate#(X) -> c_2(X):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: activate#(X) -> c_2(X) 6: from#(X) -> c_7(X) 4: cons#(X1,X2) -> c_5(X1,X2) 5: from#(X) -> c_6(cons#(X,n__from(s(X)))) 3: activate#(n__from(X)) -> c_4(from#(X)) 2: activate#(n__cons(X1,X2)) -> c_3(cons#(X1,X2)) *** Step 4.b:1.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Signature: {2nd/1,activate/1,cons/2,from/1,2nd#/1,activate#/1,cons#/2,from#/1} / {n__cons/2,n__from/1,s/1,c_1/1,c_2/1 ,c_3/1,c_4/1,c_5/2,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {2nd#,activate#,cons#,from#} and constructors {n__cons,n__from,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))