/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 69 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 223 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 45 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 3362 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 410 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^1) (33) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (34) TRS for Loop Detection (35) DecreasingLoopProof [LOWER BOUND(ID), 33 ms] (36) BEST (37) proven lower bound (38) LowerBoundPropagationProof [FINISHED, 0 ms] (39) BOUNDS(n^1, INF) (40) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(X1, X2) activate(n__from(X)) -> from(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__len(X)) -> len(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(X1, X2) activate(n__from(X)) -> from(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__len(X)) -> len(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: fst(0, Z) -> nil [1] fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(n__add(activate(X), Y)) [1] len(nil) -> 0 [1] len(cons(X, Z)) -> s(n__len(activate(Z))) [1] fst(X1, X2) -> n__fst(X1, X2) [1] from(X) -> n__from(X) [1] add(X1, X2) -> n__add(X1, X2) [1] len(X) -> n__len(X) [1] activate(n__fst(X1, X2)) -> fst(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__add(X1, X2)) -> add(X1, X2) [1] activate(n__len(X)) -> len(X) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fst(0, Z) -> nil [1] fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(n__add(activate(X), Y)) [1] len(nil) -> 0 [1] len(cons(X, Z)) -> s(n__len(activate(Z))) [1] fst(X1, X2) -> n__fst(X1, X2) [1] from(X) -> n__from(X) [1] add(X1, X2) -> n__add(X1, X2) [1] len(X) -> n__len(X) [1] activate(n__fst(X1, X2)) -> fst(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__add(X1, X2)) -> add(X1, X2) [1] activate(n__len(X)) -> len(X) [1] activate(X) -> X [1] The TRS has the following type information: fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len 0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: fst_2 from_1 add_2 len_1 activate_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fst(0, Z) -> nil [1] fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(n__add(activate(X), Y)) [1] len(nil) -> 0 [1] len(cons(X, Z)) -> s(n__len(activate(Z))) [1] fst(X1, X2) -> n__fst(X1, X2) [1] from(X) -> n__from(X) [1] add(X1, X2) -> n__add(X1, X2) [1] len(X) -> n__len(X) [1] activate(n__fst(X1, X2)) -> fst(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__add(X1, X2)) -> add(X1, X2) [1] activate(n__len(X)) -> len(X) [1] activate(X) -> X [1] The TRS has the following type information: fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len 0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fst(0, Z) -> nil [1] fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] add(0, X) -> X [1] add(s(X), Y) -> s(n__add(activate(X), Y)) [1] len(nil) -> 0 [1] len(cons(X, Z)) -> s(n__len(activate(Z))) [1] fst(X1, X2) -> n__fst(X1, X2) [1] from(X) -> n__from(X) [1] add(X1, X2) -> n__add(X1, X2) [1] len(X) -> n__len(X) [1] activate(n__fst(X1, X2)) -> fst(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(n__add(X1, X2)) -> add(X1, X2) [1] activate(n__len(X)) -> len(X) [1] activate(X) -> X [1] The TRS has the following type information: fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len 0 :: 0:nil:s:cons:n__fst:n__from:n__add:n__len nil :: 0:nil:s:cons:n__fst:n__from:n__add:n__len s :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len cons :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__fst :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len activate :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__from :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__add :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len n__len :: 0:nil:s:cons:n__fst:n__from:n__add:n__len -> 0:nil:s:cons:n__fst:n__from:n__add:n__len Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 nil => 1 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> len(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 add(z, z') -{ 1 }-> X :|: z' = X, X >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(X) + Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0 add(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X fst(z, z') -{ 1 }-> 1 :|: Z >= 0, z' = Z, z = 0 fst(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(X) + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + X :|: X >= 0, z = X len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> len(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X' add(z, z') -{ 1 }-> X :|: z' = X, X >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(X) + Y) :|: z = 1 + X, z' = Y, Y >= 0, X >= 0 add(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X fst(z, z') -{ 1 }-> 1 :|: Z >= 0, z' = Z, z = 0 fst(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(X) + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + X :|: X >= 0, z = X len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { from } { fst, add, activate, len } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: {from}, {fst,add,activate,len} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: {from}, {fst,add,activate,len} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: {from}, {fst,add,activate,len} Previous analysis results are: from: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: {fst,add,activate,len} Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: {fst,add,activate,len} Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: fst after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 14 + 26*z + 24*z*z' + 12*z^2 + 26*z' + 12*z'^2 Computed SIZE bound using KoAT for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 20 + 64*z + z*z' + 49*z^2 + 2*z' Computed SIZE bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 39 + 125*z + 98*z^2 Computed SIZE bound using KoAT for: len after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 42 + 126*z + 98*z^2 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: {fst,add,activate,len} Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] fst: runtime: ?, size: O(n^2) [14 + 26*z + 24*z*z' + 12*z^2 + 26*z' + 12*z'^2] add: runtime: ?, size: O(n^2) [20 + 64*z + z*z' + 49*z^2 + 2*z'] activate: runtime: ?, size: O(n^2) [39 + 125*z + 98*z^2] len: runtime: ?, size: O(n^2) [42 + 126*z + 98*z^2] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: fst after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 15 + 15*z + 15*z' Computed RUNTIME bound using KoAT for: add after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 23 + 34*z Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 45 + 66*z Computed RUNTIME bound using CoFloCo for: len after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 20 + 66*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> len(z - 1) :|: z - 1 >= 0 activate(z) -{ 1 }-> fst(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 1 }-> add(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' add(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 add(z, z') -{ 1 }-> 1 + (1 + activate(z - 1) + z') :|: z' >= 0, z - 1 >= 0 add(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 fst(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 fst(z, z') -{ 1 }-> 1 + Y + (1 + activate(z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z fst(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 len(z) -{ 1 }-> 0 :|: z = 1 len(z) -{ 1 }-> 1 + z :|: z >= 0 len(z) -{ 1 }-> 1 + (1 + activate(Z)) :|: Z >= 0, X >= 0, z = 1 + X + Z Function symbols to be analyzed: Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] fst: runtime: O(n^1) [15 + 15*z + 15*z'], size: O(n^2) [14 + 26*z + 24*z*z' + 12*z^2 + 26*z' + 12*z'^2] add: runtime: O(n^1) [23 + 34*z], size: O(n^2) [20 + 64*z + z*z' + 49*z^2 + 2*z'] activate: runtime: O(n^1) [45 + 66*z], size: O(n^2) [39 + 125*z + 98*z^2] len: runtime: O(n^1) [20 + 66*z], size: O(n^2) [42 + 126*z + 98*z^2] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^1) ---------------------------------------- (33) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(X1, X2) activate(n__from(X)) -> from(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__len(X)) -> len(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__fst(s(X1_0), cons(Y2_0, Z3_0))) ->^+ cons(Y2_0, n__fst(activate(X1_0), activate(Z3_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0]. The pumping substitution is [X1_0 / n__fst(s(X1_0), cons(Y2_0, Z3_0))]. The result substitution is [ ]. ---------------------------------------- (36) Complex Obligation (BEST) ---------------------------------------- (37) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(X1, X2) activate(n__from(X)) -> from(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__len(X)) -> len(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (38) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (39) BOUNDS(n^1, INF) ---------------------------------------- (40) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, n__fst(activate(X), activate(Z))) from(X) -> cons(X, n__from(s(X))) add(0, X) -> X add(s(X), Y) -> s(n__add(activate(X), Y)) len(nil) -> 0 len(cons(X, Z)) -> s(n__len(activate(Z))) fst(X1, X2) -> n__fst(X1, X2) from(X) -> n__from(X) add(X1, X2) -> n__add(X1, X2) len(X) -> n__len(X) activate(n__fst(X1, X2)) -> fst(X1, X2) activate(n__from(X)) -> from(X) activate(n__add(X1, X2)) -> add(X1, X2) activate(n__len(X)) -> len(X) activate(X) -> X S is empty. Rewrite Strategy: FULL