/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) InfiniteLowerBoundProof [FINISHED, 38 ms] (4) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: pairNs -> cons(0, n__incr(oddNs)) oddNs -> incr(pairNs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) take(0, XS) -> nil take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) zip(nil, XS) -> nil zip(X, nil) -> nil zip(cons(X, XS), cons(Y, YS)) -> cons(pair(X, Y), n__zip(activate(XS), activate(YS))) tail(cons(X, XS)) -> activate(XS) repItems(nil) -> nil repItems(cons(X, XS)) -> cons(X, n__cons(X, n__repItems(activate(XS)))) incr(X) -> n__incr(X) take(X1, X2) -> n__take(X1, X2) zip(X1, X2) -> n__zip(X1, X2) cons(X1, X2) -> n__cons(X1, X2) repItems(X) -> n__repItems(X) activate(n__incr(X)) -> incr(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__zip(X1, X2)) -> zip(X1, X2) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__repItems(X)) -> repItems(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: pairNs -> cons(0, n__incr(oddNs)) oddNs -> incr(pairNs) incr(cons(X, XS)) -> cons(s(X), n__incr(activate(XS))) take(0, XS) -> nil take(s(N), cons(X, XS)) -> cons(X, n__take(N, activate(XS))) zip(nil, XS) -> nil zip(X, nil) -> nil zip(cons(X, XS), cons(Y, YS)) -> cons(pair(X, Y), n__zip(activate(XS), activate(YS))) tail(cons(X, XS)) -> activate(XS) repItems(nil) -> nil repItems(cons(X, XS)) -> cons(X, n__cons(X, n__repItems(activate(XS)))) incr(X) -> n__incr(X) take(X1, X2) -> n__take(X1, X2) zip(X1, X2) -> n__zip(X1, X2) cons(X1, X2) -> n__cons(X1, X2) repItems(X) -> n__repItems(X) activate(n__incr(X)) -> incr(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__zip(X1, X2)) -> zip(X1, X2) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__repItems(X)) -> repItems(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence oddNs ->^+ incr(cons(0, n__incr(oddNs))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. The pumping substitution is [ ]. The result substitution is [ ]. ---------------------------------------- (4) BOUNDS(INF, INF)