/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. The certificate found is represented by the following graph. "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] {(1,2,[a__f_1|0, a__c_1|0, a__h_1|0, mark_1|0, f_1|1, d_1|1, c_1|1, h_1|1, a__c_1|1, g_1|1, d_1|2, c_1|2]), (1,3,[a__c_1|1, d_1|2, c_1|2]), (1,6,[a__c_1|1, d_1|2, c_1|2]), (1,7,[a__f_1|1, f_1|2]), (1,8,[a__h_1|1, h_1|2]), (1,9,[a__c_1|2, d_1|3, c_1|3]), (1,10,[a__c_1|2, d_1|3, c_1|3]), (2,2,[f_1|0, g_1|0, d_1|0, c_1|0, h_1|0]), (3,4,[f_1|1]), (4,5,[g_1|1]), (5,2,[f_1|1]), (6,2,[d_1|1]), (7,2,[mark_1|1, a__c_1|1, g_1|1, d_1|1, d_1|2, c_1|2]), (7,7,[a__f_1|1, f_1|2]), (7,8,[a__h_1|1, h_1|2]), (7,9,[a__c_1|2, d_1|3, c_1|3]), (7,10,[a__c_1|2, d_1|3, c_1|3]), (8,2,[mark_1|1, a__c_1|1, g_1|1, d_1|1, d_1|2, c_1|2]), (8,7,[a__f_1|1, f_1|2]), (8,8,[a__h_1|1, h_1|2]), (8,9,[a__c_1|2, d_1|3, c_1|3]), (8,10,[a__c_1|2, d_1|3, c_1|3]), (9,8,[d_1|2]), (10,11,[f_1|2]), (11,12,[g_1|2]), (12,7,[f_1|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(f(X)) ->^+ a__f(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / f(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) S is empty. Rewrite Strategy: FULL