/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 88 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 404 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 101 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 69 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 120 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(0) -> ok(0) proper(nil) -> ok(nil) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(0) -> ok(0) proper(nil) -> ok(nil) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: mark0(0) -> 0 true0() -> 0 ok0(0) -> 0 false0() -> 0 00() -> 0 nil0() -> 0 active0(0) -> 0 and0(0, 0) -> 1 if0(0, 0, 0) -> 2 add0(0, 0) -> 3 first0(0, 0) -> 4 proper0(0) -> 5 s0(0) -> 6 cons0(0, 0) -> 7 from0(0) -> 8 top0(0) -> 9 and1(0, 0) -> 10 mark1(10) -> 1 if1(0, 0, 0) -> 11 mark1(11) -> 2 add1(0, 0) -> 12 mark1(12) -> 3 first1(0, 0) -> 13 mark1(13) -> 4 true1() -> 14 ok1(14) -> 5 false1() -> 15 ok1(15) -> 5 01() -> 16 ok1(16) -> 5 nil1() -> 17 ok1(17) -> 5 and1(0, 0) -> 18 ok1(18) -> 1 if1(0, 0, 0) -> 19 ok1(19) -> 2 add1(0, 0) -> 20 ok1(20) -> 3 s1(0) -> 21 ok1(21) -> 6 first1(0, 0) -> 22 ok1(22) -> 4 cons1(0, 0) -> 23 ok1(23) -> 7 from1(0) -> 24 ok1(24) -> 8 proper1(0) -> 25 top1(25) -> 9 active1(0) -> 26 top1(26) -> 9 mark1(10) -> 10 mark1(10) -> 18 mark1(11) -> 11 mark1(11) -> 19 mark1(12) -> 12 mark1(12) -> 20 mark1(13) -> 13 mark1(13) -> 22 ok1(14) -> 25 ok1(15) -> 25 ok1(16) -> 25 ok1(17) -> 25 ok1(18) -> 10 ok1(18) -> 18 ok1(19) -> 11 ok1(19) -> 19 ok1(20) -> 12 ok1(20) -> 20 ok1(21) -> 21 ok1(22) -> 13 ok1(22) -> 22 ok1(23) -> 23 ok1(24) -> 24 active2(14) -> 27 top2(27) -> 9 active2(15) -> 27 active2(16) -> 27 active2(17) -> 27 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, s, add, cons, first, from, and, if, proper, top They will be analysed ascendingly in the following order: s < active add < active cons < active first < active from < active and < active if < active active < top s < proper add < proper cons < proper first < proper from < proper and < proper if < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok Generator Equations: gen_true:mark:false:0':nil:ok3_0(0) <=> true gen_true:mark:false:0':nil:ok3_0(+(x, 1)) <=> mark(gen_true:mark:false:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: s, active, add, cons, first, from, and, if, proper, top They will be analysed ascendingly in the following order: s < active add < active cons < active first < active from < active and < active if < active active < top s < proper add < proper cons < proper first < proper from < proper and < proper if < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_true:mark:false:0':nil:ok3_0(+(1, n9_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n9_0) Induction Base: add(gen_true:mark:false:0':nil:ok3_0(+(1, 0)), gen_true:mark:false:0':nil:ok3_0(b)) Induction Step: add(gen_true:mark:false:0':nil:ok3_0(+(1, +(n9_0, 1))), gen_true:mark:false:0':nil:ok3_0(b)) ->_R^Omega(1) mark(add(gen_true:mark:false:0':nil:ok3_0(+(1, n9_0)), gen_true:mark:false:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok Generator Equations: gen_true:mark:false:0':nil:ok3_0(0) <=> true gen_true:mark:false:0':nil:ok3_0(+(x, 1)) <=> mark(gen_true:mark:false:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: add, active, cons, first, from, and, if, proper, top They will be analysed ascendingly in the following order: add < active cons < active first < active from < active and < active if < active active < top add < proper cons < proper first < proper from < proper and < proper if < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok Lemmas: add(gen_true:mark:false:0':nil:ok3_0(+(1, n9_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n9_0) Generator Equations: gen_true:mark:false:0':nil:ok3_0(0) <=> true gen_true:mark:false:0':nil:ok3_0(+(x, 1)) <=> mark(gen_true:mark:false:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, first, from, and, if, proper, top They will be analysed ascendingly in the following order: cons < active first < active from < active and < active if < active active < top cons < proper first < proper from < proper and < proper if < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: first(gen_true:mark:false:0':nil:ok3_0(+(1, n1003_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1003_0) Induction Base: first(gen_true:mark:false:0':nil:ok3_0(+(1, 0)), gen_true:mark:false:0':nil:ok3_0(b)) Induction Step: first(gen_true:mark:false:0':nil:ok3_0(+(1, +(n1003_0, 1))), gen_true:mark:false:0':nil:ok3_0(b)) ->_R^Omega(1) mark(first(gen_true:mark:false:0':nil:ok3_0(+(1, n1003_0)), gen_true:mark:false:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok Lemmas: add(gen_true:mark:false:0':nil:ok3_0(+(1, n9_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n9_0) first(gen_true:mark:false:0':nil:ok3_0(+(1, n1003_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1003_0) Generator Equations: gen_true:mark:false:0':nil:ok3_0(0) <=> true gen_true:mark:false:0':nil:ok3_0(+(x, 1)) <=> mark(gen_true:mark:false:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: from, active, and, if, proper, top They will be analysed ascendingly in the following order: from < active and < active if < active active < top from < proper and < proper if < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: and(gen_true:mark:false:0':nil:ok3_0(+(1, n2503_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n2503_0) Induction Base: and(gen_true:mark:false:0':nil:ok3_0(+(1, 0)), gen_true:mark:false:0':nil:ok3_0(b)) Induction Step: and(gen_true:mark:false:0':nil:ok3_0(+(1, +(n2503_0, 1))), gen_true:mark:false:0':nil:ok3_0(b)) ->_R^Omega(1) mark(and(gen_true:mark:false:0':nil:ok3_0(+(1, n2503_0)), gen_true:mark:false:0':nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok Lemmas: add(gen_true:mark:false:0':nil:ok3_0(+(1, n9_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n9_0) first(gen_true:mark:false:0':nil:ok3_0(+(1, n1003_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1003_0) and(gen_true:mark:false:0':nil:ok3_0(+(1, n2503_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n2503_0) Generator Equations: gen_true:mark:false:0':nil:ok3_0(0) <=> true gen_true:mark:false:0':nil:ok3_0(+(x, 1)) <=> mark(gen_true:mark:false:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: if, active, proper, top They will be analysed ascendingly in the following order: if < active active < top if < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: if(gen_true:mark:false:0':nil:ok3_0(+(1, n4096_0)), gen_true:mark:false:0':nil:ok3_0(b), gen_true:mark:false:0':nil:ok3_0(c)) -> *4_0, rt in Omega(n4096_0) Induction Base: if(gen_true:mark:false:0':nil:ok3_0(+(1, 0)), gen_true:mark:false:0':nil:ok3_0(b), gen_true:mark:false:0':nil:ok3_0(c)) Induction Step: if(gen_true:mark:false:0':nil:ok3_0(+(1, +(n4096_0, 1))), gen_true:mark:false:0':nil:ok3_0(b), gen_true:mark:false:0':nil:ok3_0(c)) ->_R^Omega(1) mark(if(gen_true:mark:false:0':nil:ok3_0(+(1, n4096_0)), gen_true:mark:false:0':nil:ok3_0(b), gen_true:mark:false:0':nil:ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0', X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(and(X1, X2)) -> and(active(X1), X2) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(add(X1, X2)) -> add(active(X1), X2) active(first(X1, X2)) -> first(active(X1), X2) active(first(X1, X2)) -> first(X1, active(X2)) and(mark(X1), X2) -> mark(and(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) add(mark(X1), X2) -> mark(add(X1, X2)) first(mark(X1), X2) -> mark(first(X1, X2)) first(X1, mark(X2)) -> mark(first(X1, X2)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(first(X1, X2)) -> first(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) s(ok(X)) -> ok(s(X)) first(ok(X1), ok(X2)) -> ok(first(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok and :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok true :: true:mark:false:0':nil:ok mark :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok false :: true:mark:false:0':nil:ok if :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok add :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok 0' :: true:mark:false:0':nil:ok s :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok first :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok nil :: true:mark:false:0':nil:ok cons :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok from :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok proper :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok ok :: true:mark:false:0':nil:ok -> true:mark:false:0':nil:ok top :: true:mark:false:0':nil:ok -> top hole_true:mark:false:0':nil:ok1_0 :: true:mark:false:0':nil:ok hole_top2_0 :: top gen_true:mark:false:0':nil:ok3_0 :: Nat -> true:mark:false:0':nil:ok Lemmas: add(gen_true:mark:false:0':nil:ok3_0(+(1, n9_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n9_0) first(gen_true:mark:false:0':nil:ok3_0(+(1, n1003_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n1003_0) and(gen_true:mark:false:0':nil:ok3_0(+(1, n2503_0)), gen_true:mark:false:0':nil:ok3_0(b)) -> *4_0, rt in Omega(n2503_0) if(gen_true:mark:false:0':nil:ok3_0(+(1, n4096_0)), gen_true:mark:false:0':nil:ok3_0(b), gen_true:mark:false:0':nil:ok3_0(c)) -> *4_0, rt in Omega(n4096_0) Generator Equations: gen_true:mark:false:0':nil:ok3_0(0) <=> true gen_true:mark:false:0':nil:ok3_0(+(x, 1)) <=> mark(gen_true:mark:false:0':nil:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top