/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 412 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__s(X)) ->^+ s(activate(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / n__s(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: and(tt, T) -> T isNatIList(IL) -> isNatList(activate(IL)) isNat(n__0) -> tt isNat(n__s(N)) -> isNat(activate(N)) isNat(n__length(L)) -> isNatList(activate(L)) isNatIList(n__zeros) -> tt isNatIList(n__cons(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) isNatList(n__nil) -> tt isNatList(n__cons(N, L)) -> and(isNat(activate(N)), isNatList(activate(L))) isNatList(n__take(N, IL)) -> and(isNat(activate(N)), isNatIList(activate(IL))) zeros -> cons(0, n__zeros) take(0, IL) -> uTake1(isNatIList(IL)) uTake1(tt) -> nil take(s(M), cons(N, IL)) -> uTake2(and(isNat(M), and(isNat(N), isNatIList(activate(IL)))), M, N, activate(IL)) uTake2(tt, M, N, IL) -> cons(activate(N), n__take(activate(M), activate(IL))) length(cons(N, L)) -> uLength(and(isNat(N), isNatList(activate(L))), activate(L)) uLength(tt, L) -> s(length(activate(L))) 0 -> n__0 s(X) -> n__s(X) length(X) -> n__length(X) zeros -> n__zeros cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil take(X1, X2) -> n__take(X1, X2) activate(n__0) -> 0 activate(n__s(X)) -> s(activate(X)) activate(n__length(X)) -> length(activate(X)) activate(n__zeros) -> zeros activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence activate(n__length(n__cons(X11_0, X22_0))) ->^+ uLength(and(isNat(activate(X11_0)), isNatList(activate(X22_0))), activate(X22_0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. The pumping substitution is [X22_0 / n__length(n__cons(X11_0, X22_0))]. The result substitution is [ ]. The rewrite sequence activate(n__length(n__cons(X11_0, X22_0))) ->^+ uLength(and(isNat(activate(X11_0)), isNatList(activate(X22_0))), activate(X22_0)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [X22_0 / n__length(n__cons(X11_0, X22_0))]. The result substitution is [ ]. ---------------------------------------- (10) BOUNDS(EXP, INF)