/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 24 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 408 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 79 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 98 ms] (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(and(tt, X)) -> mark(X) active(plus(N, 0)) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(and(tt, X)) -> mark(X) active(plus(N, 0)) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(tt) -> ok(tt) proper(0) -> ok(0) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(tt) -> ok(tt) proper(0) -> ok(0) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: mark0(0) -> 0 tt0() -> 0 ok0(0) -> 0 00() -> 0 active0(0) -> 0 and0(0, 0) -> 1 plus0(0, 0) -> 2 s0(0) -> 3 proper0(0) -> 4 top0(0) -> 5 and1(0, 0) -> 6 mark1(6) -> 1 plus1(0, 0) -> 7 mark1(7) -> 2 s1(0) -> 8 mark1(8) -> 3 tt1() -> 9 ok1(9) -> 4 01() -> 10 ok1(10) -> 4 and1(0, 0) -> 11 ok1(11) -> 1 plus1(0, 0) -> 12 ok1(12) -> 2 s1(0) -> 13 ok1(13) -> 3 proper1(0) -> 14 top1(14) -> 5 active1(0) -> 15 top1(15) -> 5 mark1(6) -> 6 mark1(6) -> 11 mark1(7) -> 7 mark1(7) -> 12 mark1(8) -> 8 mark1(8) -> 13 ok1(9) -> 14 ok1(10) -> 14 ok1(11) -> 6 ok1(11) -> 11 ok1(12) -> 7 ok1(12) -> 12 ok1(13) -> 8 ok1(13) -> 13 active2(9) -> 16 top2(16) -> 5 active2(10) -> 16 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, s, plus, and, proper, top They will be analysed ascendingly in the following order: s < active plus < active and < active active < top s < proper plus < proper and < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: s, active, plus, and, proper, top They will be analysed ascendingly in the following order: s < active plus < active and < active active < top s < proper plus < proper and < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: s(gen_tt:mark:0':ok3_0(+(1, 0))) Induction Step: s(gen_tt:mark:0':ok3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) mark(s(gen_tt:mark:0':ok3_0(+(1, n5_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: s, active, plus, and, proper, top They will be analysed ascendingly in the following order: s < active plus < active and < active active < top s < proper plus < proper and < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: plus, active, and, proper, top They will be analysed ascendingly in the following order: plus < active and < active active < top plus < proper and < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n335_0) Induction Base: plus(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b)) Induction Step: plus(gen_tt:mark:0':ok3_0(+(1, +(n335_0, 1))), gen_tt:mark:0':ok3_0(b)) ->_R^Omega(1) mark(plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n335_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: and, active, proper, top They will be analysed ascendingly in the following order: and < active active < top and < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: and(gen_tt:mark:0':ok3_0(+(1, n1471_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n1471_0) Induction Base: and(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b)) Induction Step: and(gen_tt:mark:0':ok3_0(+(1, +(n1471_0, 1))), gen_tt:mark:0':ok3_0(b)) ->_R^Omega(1) mark(and(gen_tt:mark:0':ok3_0(+(1, n1471_0)), gen_tt:mark:0':ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(and(tt, X)) -> mark(X) active(plus(N, 0')) -> mark(N) active(plus(N, s(M))) -> mark(s(plus(N, M))) active(and(X1, X2)) -> and(active(X1), X2) active(plus(X1, X2)) -> plus(active(X1), X2) active(plus(X1, X2)) -> plus(X1, active(X2)) active(s(X)) -> s(active(X)) and(mark(X1), X2) -> mark(and(X1, X2)) plus(mark(X1), X2) -> mark(plus(X1, X2)) plus(X1, mark(X2)) -> mark(plus(X1, X2)) s(mark(X)) -> mark(s(X)) proper(and(X1, X2)) -> and(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(plus(X1, X2)) -> plus(proper(X1), proper(X2)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) and(ok(X1), ok(X2)) -> ok(and(X1, X2)) plus(ok(X1), ok(X2)) -> ok(plus(X1, X2)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: tt:mark:0':ok -> tt:mark:0':ok and :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok tt :: tt:mark:0':ok mark :: tt:mark:0':ok -> tt:mark:0':ok plus :: tt:mark:0':ok -> tt:mark:0':ok -> tt:mark:0':ok 0' :: tt:mark:0':ok s :: tt:mark:0':ok -> tt:mark:0':ok proper :: tt:mark:0':ok -> tt:mark:0':ok ok :: tt:mark:0':ok -> tt:mark:0':ok top :: tt:mark:0':ok -> top hole_tt:mark:0':ok1_0 :: tt:mark:0':ok hole_top2_0 :: top gen_tt:mark:0':ok3_0 :: Nat -> tt:mark:0':ok Lemmas: s(gen_tt:mark:0':ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n335_0) and(gen_tt:mark:0':ok3_0(+(1, n1471_0)), gen_tt:mark:0':ok3_0(b)) -> *4_0, rt in Omega(n1471_0) Generator Equations: gen_tt:mark:0':ok3_0(0) <=> tt gen_tt:mark:0':ok3_0(+(x, 1)) <=> mark(gen_tt:mark:0':ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top