/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 49 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 399 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 124 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 100 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 52 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 90 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 48 ms] (28) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(nil) -> ok(nil) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(nil) -> ok(nil) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8] transitions: mark0(0) -> 0 nil0() -> 0 ok0(0) -> 0 active0(0) -> 0 app0(0, 0) -> 1 cons0(0, 0) -> 2 from0(0) -> 3 s0(0) -> 4 zWadr0(0, 0) -> 5 prefix0(0) -> 6 proper0(0) -> 7 top0(0) -> 8 app1(0, 0) -> 9 mark1(9) -> 1 cons1(0, 0) -> 10 mark1(10) -> 2 from1(0) -> 11 mark1(11) -> 3 s1(0) -> 12 mark1(12) -> 4 zWadr1(0, 0) -> 13 mark1(13) -> 5 prefix1(0) -> 14 mark1(14) -> 6 nil1() -> 15 ok1(15) -> 7 app1(0, 0) -> 16 ok1(16) -> 1 cons1(0, 0) -> 17 ok1(17) -> 2 from1(0) -> 18 ok1(18) -> 3 s1(0) -> 19 ok1(19) -> 4 zWadr1(0, 0) -> 20 ok1(20) -> 5 prefix1(0) -> 21 ok1(21) -> 6 proper1(0) -> 22 top1(22) -> 8 active1(0) -> 23 top1(23) -> 8 mark1(9) -> 9 mark1(9) -> 16 mark1(10) -> 10 mark1(10) -> 17 mark1(11) -> 11 mark1(11) -> 18 mark1(12) -> 12 mark1(12) -> 19 mark1(13) -> 13 mark1(13) -> 20 mark1(14) -> 14 mark1(14) -> 21 ok1(15) -> 22 ok1(16) -> 9 ok1(16) -> 16 ok1(17) -> 10 ok1(17) -> 17 ok1(18) -> 11 ok1(18) -> 18 ok1(19) -> 12 ok1(19) -> 19 ok1(20) -> 13 ok1(20) -> 20 ok1(21) -> 14 ok1(21) -> 21 active2(15) -> 24 top2(24) -> 8 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, cons, app, from, s, zWadr, prefix, proper, top They will be analysed ascendingly in the following order: cons < active app < active from < active s < active zWadr < active prefix < active active < top cons < proper app < proper from < proper s < proper zWadr < proper prefix < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, app, from, s, zWadr, prefix, proper, top They will be analysed ascendingly in the following order: cons < active app < active from < active s < active zWadr < active prefix < active active < top cons < proper app < proper from < proper s < proper zWadr < proper prefix < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: cons(gen_nil:mark:ok3_0(+(1, 0)), gen_nil:mark:ok3_0(b)) Induction Step: cons(gen_nil:mark:ok3_0(+(1, +(n5_0, 1))), gen_nil:mark:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, app, from, s, zWadr, prefix, proper, top They will be analysed ascendingly in the following order: cons < active app < active from < active s < active zWadr < active prefix < active active < top cons < proper app < proper from < proper s < proper zWadr < proper prefix < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Lemmas: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: app, active, from, s, zWadr, prefix, proper, top They will be analysed ascendingly in the following order: app < active from < active s < active zWadr < active prefix < active active < top app < proper from < proper s < proper zWadr < proper prefix < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n972_0) Induction Base: app(gen_nil:mark:ok3_0(+(1, 0)), gen_nil:mark:ok3_0(b)) Induction Step: app(gen_nil:mark:ok3_0(+(1, +(n972_0, 1))), gen_nil:mark:ok3_0(b)) ->_R^Omega(1) mark(app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Lemmas: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n972_0) Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: from, active, s, zWadr, prefix, proper, top They will be analysed ascendingly in the following order: from < active s < active zWadr < active prefix < active active < top from < proper s < proper zWadr < proper prefix < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: from(gen_nil:mark:ok3_0(+(1, n2444_0))) -> *4_0, rt in Omega(n2444_0) Induction Base: from(gen_nil:mark:ok3_0(+(1, 0))) Induction Step: from(gen_nil:mark:ok3_0(+(1, +(n2444_0, 1)))) ->_R^Omega(1) mark(from(gen_nil:mark:ok3_0(+(1, n2444_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Lemmas: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n972_0) from(gen_nil:mark:ok3_0(+(1, n2444_0))) -> *4_0, rt in Omega(n2444_0) Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: s, active, zWadr, prefix, proper, top They will be analysed ascendingly in the following order: s < active zWadr < active prefix < active active < top s < proper zWadr < proper prefix < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_nil:mark:ok3_0(+(1, n3125_0))) -> *4_0, rt in Omega(n3125_0) Induction Base: s(gen_nil:mark:ok3_0(+(1, 0))) Induction Step: s(gen_nil:mark:ok3_0(+(1, +(n3125_0, 1)))) ->_R^Omega(1) mark(s(gen_nil:mark:ok3_0(+(1, n3125_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Lemmas: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n972_0) from(gen_nil:mark:ok3_0(+(1, n2444_0))) -> *4_0, rt in Omega(n2444_0) s(gen_nil:mark:ok3_0(+(1, n3125_0))) -> *4_0, rt in Omega(n3125_0) Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: zWadr, active, prefix, proper, top They will be analysed ascendingly in the following order: zWadr < active prefix < active active < top zWadr < proper prefix < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: zWadr(gen_nil:mark:ok3_0(+(1, n3907_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n3907_0) Induction Base: zWadr(gen_nil:mark:ok3_0(+(1, 0)), gen_nil:mark:ok3_0(b)) Induction Step: zWadr(gen_nil:mark:ok3_0(+(1, +(n3907_0, 1))), gen_nil:mark:ok3_0(b)) ->_R^Omega(1) mark(zWadr(gen_nil:mark:ok3_0(+(1, n3907_0)), gen_nil:mark:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Lemmas: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n972_0) from(gen_nil:mark:ok3_0(+(1, n2444_0))) -> *4_0, rt in Omega(n2444_0) s(gen_nil:mark:ok3_0(+(1, n3125_0))) -> *4_0, rt in Omega(n3125_0) zWadr(gen_nil:mark:ok3_0(+(1, n3907_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n3907_0) Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: prefix, active, proper, top They will be analysed ascendingly in the following order: prefix < active active < top prefix < proper proper < top ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: prefix(gen_nil:mark:ok3_0(+(1, n6101_0))) -> *4_0, rt in Omega(n6101_0) Induction Base: prefix(gen_nil:mark:ok3_0(+(1, 0))) Induction Step: prefix(gen_nil:mark:ok3_0(+(1, +(n6101_0, 1)))) ->_R^Omega(1) mark(prefix(gen_nil:mark:ok3_0(+(1, n6101_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: TRS: Rules: active(app(nil, YS)) -> mark(YS) active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS))) active(from(X)) -> mark(cons(X, from(s(X)))) active(zWadr(nil, YS)) -> mark(nil) active(zWadr(XS, nil)) -> mark(nil) active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS))) active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L)))) active(app(X1, X2)) -> app(active(X1), X2) active(app(X1, X2)) -> app(X1, active(X2)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(zWadr(X1, X2)) -> zWadr(active(X1), X2) active(zWadr(X1, X2)) -> zWadr(X1, active(X2)) active(prefix(X)) -> prefix(active(X)) app(mark(X1), X2) -> mark(app(X1, X2)) app(X1, mark(X2)) -> mark(app(X1, X2)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) zWadr(mark(X1), X2) -> mark(zWadr(X1, X2)) zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2)) prefix(mark(X)) -> mark(prefix(X)) proper(app(X1, X2)) -> app(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2)) proper(prefix(X)) -> prefix(proper(X)) app(ok(X1), ok(X2)) -> ok(app(X1, X2)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2)) prefix(ok(X)) -> ok(prefix(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: nil:mark:ok -> nil:mark:ok app :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok nil :: nil:mark:ok mark :: nil:mark:ok -> nil:mark:ok cons :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok from :: nil:mark:ok -> nil:mark:ok s :: nil:mark:ok -> nil:mark:ok zWadr :: nil:mark:ok -> nil:mark:ok -> nil:mark:ok prefix :: nil:mark:ok -> nil:mark:ok proper :: nil:mark:ok -> nil:mark:ok ok :: nil:mark:ok -> nil:mark:ok top :: nil:mark:ok -> top hole_nil:mark:ok1_0 :: nil:mark:ok hole_top2_0 :: top gen_nil:mark:ok3_0 :: Nat -> nil:mark:ok Lemmas: cons(gen_nil:mark:ok3_0(+(1, n5_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) app(gen_nil:mark:ok3_0(+(1, n972_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n972_0) from(gen_nil:mark:ok3_0(+(1, n2444_0))) -> *4_0, rt in Omega(n2444_0) s(gen_nil:mark:ok3_0(+(1, n3125_0))) -> *4_0, rt in Omega(n3125_0) zWadr(gen_nil:mark:ok3_0(+(1, n3907_0)), gen_nil:mark:ok3_0(b)) -> *4_0, rt in Omega(n3907_0) prefix(gen_nil:mark:ok3_0(+(1, n6101_0))) -> *4_0, rt in Omega(n6101_0) Generator Equations: gen_nil:mark:ok3_0(0) <=> nil gen_nil:mark:ok3_0(+(x, 1)) <=> mark(gen_nil:mark:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top