/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 80 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) proper(p(X)) -> p(proper(X)) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 true0() -> 0 false0() -> 0 active0(0) -> 0 p0(0) -> 1 s0(0) -> 2 leq0(0, 0) -> 3 if0(0, 0, 0) -> 4 diff0(0, 0) -> 5 proper0(0) -> 6 top0(0) -> 7 p1(0) -> 8 mark1(8) -> 1 s1(0) -> 9 mark1(9) -> 2 leq1(0, 0) -> 10 mark1(10) -> 3 if1(0, 0, 0) -> 11 mark1(11) -> 4 diff1(0, 0) -> 12 mark1(12) -> 5 01() -> 13 ok1(13) -> 6 true1() -> 14 ok1(14) -> 6 false1() -> 15 ok1(15) -> 6 p1(0) -> 16 ok1(16) -> 1 s1(0) -> 17 ok1(17) -> 2 leq1(0, 0) -> 18 ok1(18) -> 3 if1(0, 0, 0) -> 19 ok1(19) -> 4 diff1(0, 0) -> 20 ok1(20) -> 5 proper1(0) -> 21 top1(21) -> 7 active1(0) -> 22 top1(22) -> 7 mark1(8) -> 8 mark1(8) -> 16 mark1(9) -> 9 mark1(9) -> 17 mark1(10) -> 10 mark1(10) -> 18 mark1(11) -> 11 mark1(11) -> 19 mark1(12) -> 12 mark1(12) -> 20 ok1(13) -> 21 ok1(14) -> 21 ok1(15) -> 21 ok1(16) -> 8 ok1(16) -> 16 ok1(17) -> 9 ok1(17) -> 17 ok1(18) -> 10 ok1(18) -> 18 ok1(19) -> 11 ok1(19) -> 19 ok1(20) -> 12 ok1(20) -> 20 active2(13) -> 23 top2(23) -> 7 active2(14) -> 23 active2(15) -> 23 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence p(mark(X)) ->^+ mark(p(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / mark(X)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(p(0)) -> mark(0) active(p(s(X))) -> mark(X) active(leq(0, Y)) -> mark(true) active(leq(s(X), 0)) -> mark(false) active(leq(s(X), s(Y))) -> mark(leq(X, Y)) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(diff(X, Y)) -> mark(if(leq(X, Y), 0, s(diff(p(X), Y)))) active(p(X)) -> p(active(X)) active(s(X)) -> s(active(X)) active(leq(X1, X2)) -> leq(active(X1), X2) active(leq(X1, X2)) -> leq(X1, active(X2)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(diff(X1, X2)) -> diff(active(X1), X2) active(diff(X1, X2)) -> diff(X1, active(X2)) p(mark(X)) -> mark(p(X)) s(mark(X)) -> mark(s(X)) leq(mark(X1), X2) -> mark(leq(X1, X2)) leq(X1, mark(X2)) -> mark(leq(X1, X2)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) diff(mark(X1), X2) -> mark(diff(X1, X2)) diff(X1, mark(X2)) -> mark(diff(X1, X2)) proper(p(X)) -> p(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(leq(X1, X2)) -> leq(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(diff(X1, X2)) -> diff(proper(X1), proper(X2)) p(ok(X)) -> ok(p(X)) s(ok(X)) -> ok(s(X)) leq(ok(X1), ok(X2)) -> ok(leq(X1, X2)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) diff(ok(X1), ok(X2)) -> ok(diff(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL