/export/starexec/sandbox2/solver/bin/starexec_run_tct_rc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(v){v -> n__first(s(x),cons(z,v))} = activate(n__first(s(x),cons(z,v))) ->^+ cons(z,n__first(x,activate(v))) = C[activate(v) = activate(v){}] ** Step 1.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(n__first) = {2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [4] x1 + [9] p(cons) = [1] x2 + [2] p(first) = [4] x2 + [6] p(from) = [13] p(n__first) = [1] x2 + [3] p(n__from) = [1] p(nil) = [1] p(s) = [2] Following rules are strictly oriented: activate(X) = [4] X + [9] > [1] X + [0] = X activate(n__first(X1,X2)) = [4] X2 + [21] > [4] X2 + [6] = first(X1,X2) first(X1,X2) = [4] X2 + [6] > [1] X2 + [3] = n__first(X1,X2) first(0(),X) = [4] X + [6] > [1] = nil() from(X) = [13] > [3] = cons(X,n__from(s(X))) from(X) = [13] > [1] = n__from(X) Following rules are (at-least) weakly oriented: activate(n__from(X)) = [13] >= [13] = from(X) first(s(X),cons(Y,Z)) = [4] Z + [14] >= [4] Z + [14] = cons(Y,n__first(X,activate(Z))) ** Step 1.b:2: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(n__from(X)) -> from(X) first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(n__first) = {2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [8] x1 + [0] p(cons) = [1] x2 + [0] p(first) = [1] x1 + [8] x2 + [0] p(from) = [1] x1 + [3] p(n__first) = [1] x1 + [1] x2 + [0] p(n__from) = [1] x1 + [3] p(nil) = [0] p(s) = [1] x1 + [0] Following rules are strictly oriented: activate(n__from(X)) = [8] X + [24] > [1] X + [3] = from(X) Following rules are (at-least) weakly oriented: activate(X) = [8] X + [0] >= [1] X + [0] = X activate(n__first(X1,X2)) = [8] X1 + [8] X2 + [0] >= [1] X1 + [8] X2 + [0] = first(X1,X2) first(X1,X2) = [1] X1 + [8] X2 + [0] >= [1] X1 + [1] X2 + [0] = n__first(X1,X2) first(0(),X) = [8] X + [0] >= [0] = nil() first(s(X),cons(Y,Z)) = [1] X + [8] Z + [0] >= [1] X + [8] Z + [0] = cons(Y,n__first(X,activate(Z))) from(X) = [1] X + [3] >= [1] X + [3] = cons(X,n__from(s(X))) from(X) = [1] X + [3] >= [1] X + [3] = n__from(X) ** Step 1.b:3: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(n__first) = {2} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [5] p(activate) = [2] x1 + [0] p(cons) = [1] x2 + [0] p(first) = [2] x1 + [2] x2 + [4] p(from) = [0] p(n__first) = [1] x1 + [1] x2 + [2] p(n__from) = [0] p(nil) = [1] p(s) = [1] x1 + [0] Following rules are strictly oriented: first(s(X),cons(Y,Z)) = [2] X + [2] Z + [4] > [1] X + [2] Z + [2] = cons(Y,n__first(X,activate(Z))) Following rules are (at-least) weakly oriented: activate(X) = [2] X + [0] >= [1] X + [0] = X activate(n__first(X1,X2)) = [2] X1 + [2] X2 + [4] >= [2] X1 + [2] X2 + [4] = first(X1,X2) activate(n__from(X)) = [0] >= [0] = from(X) first(X1,X2) = [2] X1 + [2] X2 + [4] >= [1] X1 + [1] X2 + [2] = n__first(X1,X2) first(0(),X) = [2] X + [14] >= [1] = nil() from(X) = [0] >= [0] = cons(X,n__from(s(X))) from(X) = [0] >= [0] = n__from(X) ** Step 1.b:4: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) first(X1,X2) -> n__first(X1,X2) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,first/2,from/1} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1} - Obligation: runtime complexity wrt. defined symbols {activate,first,from} and constructors {0,cons,n__first,n__from,nil ,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))