/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 81 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 199 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 35 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 486 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 46 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^1) (33) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (34) TRS for Loop Detection (35) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (36) BEST (37) proven lower bound (38) LowerBoundPropagationProof [FINISHED, 0 ms] (39) BOUNDS(n^1, INF) (40) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] first(X1, X2) -> n__first(X1, X2) [1] from(X) -> n__from(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] first(X1, X2) -> n__first(X1, X2) [1] from(X) -> n__from(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] The TRS has the following type information: first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 0 :: 0:s nil :: nil:cons:n__first:n__from s :: 0:s -> 0:s cons :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from n__first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from activate :: nil:cons:n__first:n__from -> nil:cons:n__first:n__from from :: 0:s -> nil:cons:n__first:n__from n__from :: 0:s -> nil:cons:n__first:n__from Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: first_2 from_1 activate_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] first(X1, X2) -> n__first(X1, X2) [1] from(X) -> n__from(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] The TRS has the following type information: first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 0 :: 0:s nil :: nil:cons:n__first:n__from s :: 0:s -> 0:s cons :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from n__first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from activate :: nil:cons:n__first:n__from -> nil:cons:n__first:n__from from :: 0:s -> nil:cons:n__first:n__from n__from :: 0:s -> nil:cons:n__first:n__from Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: first(0, X) -> nil [1] first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) [1] from(X) -> cons(X, n__from(s(X))) [1] first(X1, X2) -> n__first(X1, X2) [1] from(X) -> n__from(X) [1] activate(n__first(X1, X2)) -> first(X1, X2) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] The TRS has the following type information: first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from 0 :: 0:s nil :: nil:cons:n__first:n__from s :: 0:s -> 0:s cons :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from n__first :: 0:s -> nil:cons:n__first:n__from -> nil:cons:n__first:n__from activate :: nil:cons:n__first:n__from -> nil:cons:n__first:n__from from :: 0:s -> nil:cons:n__first:n__from n__from :: 0:s -> nil:cons:n__first:n__from Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 nil => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 first(z, z') -{ 1 }-> 0 :|: z' = X, X >= 0, z = 0 first(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 first(z, z') -{ 1 }-> 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X' first(z, z') -{ 1 }-> 0 :|: z' = X, X >= 0, z = 0 first(z, z') -{ 1 }-> 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2 first(z, z') -{ 1 }-> 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { from } { first, activate } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {from}, {first,activate} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {from}, {first,activate} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {from}, {first,activate} Previous analysis results are: from: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {first,activate} Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {first,activate} Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: first after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + 2*z' Computed SIZE bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: {first,activate} Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] first: runtime: ?, size: O(n^1) [1 + z + 2*z'] activate: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: first after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 2*z' Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 9 + 2*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' first(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 first(z, z') -{ 1 }-> 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z first(z, z') -{ 1 }-> 1 + z + z' :|: z >= 0, z' >= 0 from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 Function symbols to be analyzed: Previous analysis results are: from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] first: runtime: O(n^1) [5 + 2*z'], size: O(n^1) [1 + z + 2*z'] activate: runtime: O(n^1) [9 + 2*z], size: O(n^1) [1 + 2*z] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^1) ---------------------------------------- (33) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__first(s(X1_0), cons(Y2_0, Z3_0))) ->^+ cons(Y2_0, n__first(X1_0, activate(Z3_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. The pumping substitution is [Z3_0 / n__first(s(X1_0), cons(Y2_0, Z3_0))]. The result substitution is [ ]. ---------------------------------------- (36) Complex Obligation (BEST) ---------------------------------------- (37) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (38) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (39) BOUNDS(n^1, INF) ---------------------------------------- (40) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: FULL