/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) SlicingProof [LOWER BOUND(ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 698 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 3. The certificate found is represented by the following graph. "[1, 2, 5, 6, 7, 8, 9, 10, 11] {(1,2,[a__f_1|0, mark_1|0, f_1|1, a|1, g_1|1]), (1,5,[a__f_1|1, f_1|2]), (1,8,[a__f_1|1, f_1|2]), (1,9,[a__f_1|2, f_1|3]), (2,2,[f_1|0, a|0, g_1|0]), (5,6,[g_1|1]), (6,7,[f_1|1]), (7,2,[a|1]), (8,2,[mark_1|1, a|1, g_1|1]), (8,8,[a__f_1|1, f_1|2]), (8,9,[a__f_1|2, f_1|3]), (9,10,[g_1|2]), (10,11,[f_1|2]), (11,2,[a|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g(X)) -> g(X) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: g/0 ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g) -> g a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: a__f(f(a)) -> a__f(g) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g) -> g a__f(X) -> f(X) Types: a__f :: a:f:g -> a:f:g f :: a:f:g -> a:f:g a :: a:f:g g :: a:f:g mark :: a:f:g -> a:f:g hole_a:f:g1_0 :: a:f:g gen_a:f:g2_0 :: Nat -> a:f:g ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__f, mark They will be analysed ascendingly in the following order: a__f < mark ---------------------------------------- (12) Obligation: TRS: Rules: a__f(f(a)) -> a__f(g) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g) -> g a__f(X) -> f(X) Types: a__f :: a:f:g -> a:f:g f :: a:f:g -> a:f:g a :: a:f:g g :: a:f:g mark :: a:f:g -> a:f:g hole_a:f:g1_0 :: a:f:g gen_a:f:g2_0 :: Nat -> a:f:g Generator Equations: gen_a:f:g2_0(0) <=> a gen_a:f:g2_0(+(x, 1)) <=> f(gen_a:f:g2_0(x)) The following defined symbols remain to be analysed: a__f, mark They will be analysed ascendingly in the following order: a__f < mark ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_a:f:g2_0(+(1, n14_0))) -> *3_0, rt in Omega(n14_0) Induction Base: mark(gen_a:f:g2_0(+(1, 0))) Induction Step: mark(gen_a:f:g2_0(+(1, +(n14_0, 1)))) ->_R^Omega(1) a__f(mark(gen_a:f:g2_0(+(1, n14_0)))) ->_IH a__f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: a__f(f(a)) -> a__f(g) mark(f(X)) -> a__f(mark(X)) mark(a) -> a mark(g) -> g a__f(X) -> f(X) Types: a__f :: a:f:g -> a:f:g f :: a:f:g -> a:f:g a :: a:f:g g :: a:f:g mark :: a:f:g -> a:f:g hole_a:f:g1_0 :: a:f:g gen_a:f:g2_0 :: Nat -> a:f:g Generator Equations: gen_a:f:g2_0(0) <=> a gen_a:f:g2_0(+(x, 1)) <=> f(gen_a:f:g2_0(x)) The following defined symbols remain to be analysed: mark ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^1, INF)