/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsProof [FINISHED, 5 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 414 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a) -> ok(a) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) proper(f(X)) -> f(proper(X)) proper(g(X)) -> g(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) proper(a) -> ok(a) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) proper(a) -> ok(a) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[21, 22, 23, 24, 25, 26, 27, 28, 29] {(21,22,[f_1|0, proper_1|0, g_1|0, top_1|0]), (21,23,[mark_1|1]), (21,24,[ok_1|1]), (21,25,[ok_1|1]), (21,26,[ok_1|1]), (21,27,[top_1|1]), (21,28,[top_1|1]), (21,29,[top_1|2]), (22,22,[mark_1|0, a|0, ok_1|0, active_1|0]), (23,22,[f_1|1]), (23,23,[mark_1|1]), (23,24,[ok_1|1]), (24,22,[f_1|1]), (24,23,[mark_1|1]), (24,24,[ok_1|1]), (25,22,[a|1]), (26,22,[g_1|1]), (26,26,[ok_1|1]), (27,22,[proper_1|1]), (27,25,[ok_1|1]), (28,22,[active_1|1]), (29,25,[active_1|2])}" ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a) -> ok(a) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a) -> ok(a) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:mark:ok -> a:mark:ok f :: a:mark:ok -> a:mark:ok a :: a:mark:ok mark :: a:mark:ok -> a:mark:ok g :: a:mark:ok -> a:mark:ok proper :: a:mark:ok -> a:mark:ok ok :: a:mark:ok -> a:mark:ok top :: a:mark:ok -> top hole_a:mark:ok1_0 :: a:mark:ok hole_top2_0 :: top gen_a:mark:ok3_0 :: Nat -> a:mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, f, g, proper, top They will be analysed ascendingly in the following order: f < active g < active active < top f < proper g < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a) -> ok(a) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:mark:ok -> a:mark:ok f :: a:mark:ok -> a:mark:ok a :: a:mark:ok mark :: a:mark:ok -> a:mark:ok g :: a:mark:ok -> a:mark:ok proper :: a:mark:ok -> a:mark:ok ok :: a:mark:ok -> a:mark:ok top :: a:mark:ok -> top hole_a:mark:ok1_0 :: a:mark:ok hole_top2_0 :: top gen_a:mark:ok3_0 :: Nat -> a:mark:ok Generator Equations: gen_a:mark:ok3_0(0) <=> a gen_a:mark:ok3_0(+(x, 1)) <=> mark(gen_a:mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, g, proper, top They will be analysed ascendingly in the following order: f < active g < active active < top f < proper g < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_a:mark:ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_a:mark:ok3_0(+(1, 0))) Induction Step: f(gen_a:mark:ok3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) mark(f(gen_a:mark:ok3_0(+(1, n5_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a) -> ok(a) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:mark:ok -> a:mark:ok f :: a:mark:ok -> a:mark:ok a :: a:mark:ok mark :: a:mark:ok -> a:mark:ok g :: a:mark:ok -> a:mark:ok proper :: a:mark:ok -> a:mark:ok ok :: a:mark:ok -> a:mark:ok top :: a:mark:ok -> top hole_a:mark:ok1_0 :: a:mark:ok hole_top2_0 :: top gen_a:mark:ok3_0 :: Nat -> a:mark:ok Generator Equations: gen_a:mark:ok3_0(0) <=> a gen_a:mark:ok3_0(+(x, 1)) <=> mark(gen_a:mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, g, proper, top They will be analysed ascendingly in the following order: f < active g < active active < top f < proper g < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(f(a))) -> mark(f(g(f(a)))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a) -> ok(a) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: a:mark:ok -> a:mark:ok f :: a:mark:ok -> a:mark:ok a :: a:mark:ok mark :: a:mark:ok -> a:mark:ok g :: a:mark:ok -> a:mark:ok proper :: a:mark:ok -> a:mark:ok ok :: a:mark:ok -> a:mark:ok top :: a:mark:ok -> top hole_a:mark:ok1_0 :: a:mark:ok hole_top2_0 :: top gen_a:mark:ok3_0 :: Nat -> a:mark:ok Lemmas: f(gen_a:mark:ok3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_a:mark:ok3_0(0) <=> a gen_a:mark:ok3_0(+(x, 1)) <=> mark(gen_a:mark:ok3_0(x)) The following defined symbols remain to be analysed: g, active, proper, top They will be analysed ascendingly in the following order: g < active active < top g < proper proper < top