/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 7 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 474 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 146 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: mark0(0) -> 0 ok0(0) -> 0 proper0(0) -> 0 active0(0) -> 0 f0(0, 0) -> 1 g0(0) -> 2 top0(0) -> 3 f1(0, 0) -> 4 mark1(4) -> 1 g1(0) -> 5 mark1(5) -> 2 f1(0, 0) -> 6 ok1(6) -> 1 g1(0) -> 7 ok1(7) -> 2 proper1(0) -> 8 top1(8) -> 3 active1(0) -> 9 top1(9) -> 3 mark1(4) -> 4 mark1(4) -> 6 mark1(5) -> 5 mark1(5) -> 7 ok1(6) -> 4 ok1(6) -> 6 ok1(7) -> 5 ok1(7) -> 7 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok -> mark:ok g :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, f, g, proper, top They will be analysed ascendingly in the following order: f < active g < active active < top f < proper g < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok -> mark:ok g :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, g, proper, top They will be analysed ascendingly in the following order: f < active g < active active < top f < proper g < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_mark:ok3_0(+(1, 0)), gen_mark:ok3_0(b)) Induction Step: f(gen_mark:ok3_0(+(1, +(n5_0, 1))), gen_mark:ok3_0(b)) ->_R^Omega(1) mark(f(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok -> mark:ok g :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: f, active, g, proper, top They will be analysed ascendingly in the following order: f < active g < active active < top f < proper g < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok -> mark:ok g :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: f(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: g, active, proper, top They will be analysed ascendingly in the following order: g < active active < top g < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_mark:ok3_0(+(1, n594_0))) -> *4_0, rt in Omega(n594_0) Induction Base: g(gen_mark:ok3_0(+(1, 0))) Induction Step: g(gen_mark:ok3_0(+(1, +(n594_0, 1)))) ->_R^Omega(1) mark(g(gen_mark:ok3_0(+(1, n594_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(f(g(X), Y)) -> mark(f(X, f(g(X), Y))) active(f(X1, X2)) -> f(active(X1), X2) active(g(X)) -> g(active(X)) f(mark(X1), X2) -> mark(f(X1, X2)) g(mark(X)) -> mark(g(X)) proper(f(X1, X2)) -> f(proper(X1), proper(X2)) proper(g(X)) -> g(proper(X)) f(ok(X1), ok(X2)) -> ok(f(X1, X2)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok f :: mark:ok -> mark:ok -> mark:ok g :: mark:ok -> mark:ok mark :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: f(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) g(gen_mark:ok3_0(+(1, n594_0))) -> *4_0, rt in Omega(n594_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top