/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 44 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) InfiniteLowerBoundProof [FINISHED, 0 ms] (10) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0 length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0 length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence length(n__cons(X, Y)) ->^+ s(length(Y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [Y / n__cons(X, Y)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0 length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) length(n__nil) -> 0 length(n__cons(X, Y)) -> s(length1(activate(Y))) length1(X) -> length(activate(X)) from(X) -> n__from(X) nil -> n__nil cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__nil) -> nil activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence length(n__cons(X, n__from(X1_0))) ->^+ s(length(n__cons(X1_0, n__from(s(X1_0))))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [ ]. The result substitution is [X / X1_0, X1_0 / s(X1_0)]. ---------------------------------------- (10) BOUNDS(INF, INF)