/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 15 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(2nd(cons1(X, cons(Y, Z)))) -> mark(Y) active(2nd(cons(X, X1))) -> mark(2nd(cons1(X, X1))) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons1(X1, X2)) -> cons1(active(X1), X2) active(cons1(X1, X2)) -> cons1(X1, active(X2)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons1(mark(X1), X2) -> mark(cons1(X1, X2)) cons1(X1, mark(X2)) -> mark(cons1(X1, X2)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(cons1(X1, X2)) -> cons1(proper(X1), proper(X2)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons1(ok(X1), ok(X2)) -> ok(cons1(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(2nd(cons1(X, cons(Y, Z)))) -> mark(Y) active(2nd(cons(X, X1))) -> mark(2nd(cons1(X, X1))) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons1(X1, X2)) -> cons1(active(X1), X2) active(cons1(X1, X2)) -> cons1(X1, active(X2)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(cons1(X1, X2)) -> cons1(proper(X1), proper(X2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons1(mark(X1), X2) -> mark(cons1(X1, X2)) cons1(X1, mark(X2)) -> mark(cons1(X1, X2)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons1(ok(X1), ok(X2)) -> ok(cons1(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons1(mark(X1), X2) -> mark(cons1(X1, X2)) cons1(X1, mark(X2)) -> mark(cons1(X1, X2)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons1(ok(X1), ok(X2)) -> ok(cons1(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6] transitions: mark0(0) -> 0 ok0(0) -> 0 proper0(0) -> 0 active0(0) -> 0 2nd0(0) -> 1 cons0(0, 0) -> 2 from0(0) -> 3 s0(0) -> 4 cons10(0, 0) -> 5 top0(0) -> 6 2nd1(0) -> 7 mark1(7) -> 1 cons1(0, 0) -> 8 mark1(8) -> 2 from1(0) -> 9 mark1(9) -> 3 s1(0) -> 10 mark1(10) -> 4 cons11(0, 0) -> 11 mark1(11) -> 5 2nd1(0) -> 12 ok1(12) -> 1 cons1(0, 0) -> 13 ok1(13) -> 2 from1(0) -> 14 ok1(14) -> 3 s1(0) -> 15 ok1(15) -> 4 cons11(0, 0) -> 16 ok1(16) -> 5 proper1(0) -> 17 top1(17) -> 6 active1(0) -> 18 top1(18) -> 6 mark1(7) -> 7 mark1(7) -> 12 mark1(8) -> 8 mark1(8) -> 13 mark1(9) -> 9 mark1(9) -> 14 mark1(10) -> 10 mark1(10) -> 15 mark1(11) -> 11 mark1(11) -> 16 ok1(12) -> 7 ok1(12) -> 12 ok1(13) -> 8 ok1(13) -> 13 ok1(14) -> 9 ok1(14) -> 14 ok1(15) -> 10 ok1(15) -> 15 ok1(16) -> 11 ok1(16) -> 16 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(2nd(cons1(X, cons(Y, Z)))) -> mark(Y) active(2nd(cons(X, X1))) -> mark(2nd(cons1(X, X1))) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons1(X1, X2)) -> cons1(active(X1), X2) active(cons1(X1, X2)) -> cons1(X1, active(X2)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons1(mark(X1), X2) -> mark(cons1(X1, X2)) cons1(X1, mark(X2)) -> mark(cons1(X1, X2)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(cons1(X1, X2)) -> cons1(proper(X1), proper(X2)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons1(ok(X1), ok(X2)) -> ok(cons1(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence 2nd(ok(X)) ->^+ ok(2nd(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / ok(X)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(2nd(cons1(X, cons(Y, Z)))) -> mark(Y) active(2nd(cons(X, X1))) -> mark(2nd(cons1(X, X1))) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons1(X1, X2)) -> cons1(active(X1), X2) active(cons1(X1, X2)) -> cons1(X1, active(X2)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons1(mark(X1), X2) -> mark(cons1(X1, X2)) cons1(X1, mark(X2)) -> mark(cons1(X1, X2)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(cons1(X1, X2)) -> cons1(proper(X1), proper(X2)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons1(ok(X1), ok(X2)) -> ok(cons1(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(2nd(cons1(X, cons(Y, Z)))) -> mark(Y) active(2nd(cons(X, X1))) -> mark(2nd(cons1(X, X1))) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) active(cons1(X1, X2)) -> cons1(active(X1), X2) active(cons1(X1, X2)) -> cons1(X1, active(X2)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) cons1(mark(X1), X2) -> mark(cons1(X1, X2)) cons1(X1, mark(X2)) -> mark(cons1(X1, X2)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) proper(cons1(X1, X2)) -> cons1(proper(X1), proper(X2)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) cons1(ok(X1), ok(X2)) -> ok(cons1(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL