/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) InfiniteLowerBoundProof [FINISHED, 138.5 s] (10) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) length(nil) -> 0 length(cons(N, L)) -> U11(tt, activate(L)) take(0, IL) -> nil take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) length(nil) -> 0 length(cons(N, L)) -> U11(tt, activate(L)) take(0, IL) -> nil take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__take(X1, X2)) ->^+ take(activate(X1), activate(X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / n__take(X1, X2)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) length(nil) -> 0 length(cons(N, L)) -> U11(tt, activate(L)) take(0, IL) -> nil take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> U12(tt, activate(L)) U12(tt, L) -> s(length(activate(L))) U21(tt, IL, M, N) -> U22(tt, activate(IL), activate(M), activate(N)) U22(tt, IL, M, N) -> U23(tt, activate(IL), activate(M), activate(N)) U23(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) length(nil) -> 0 length(cons(N, L)) -> U11(tt, activate(L)) take(0, IL) -> nil take(s(M), cons(N, IL)) -> U21(tt, activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence length(cons(N, n__zeros)) ->^+ s(length(cons(0, n__zeros))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [ ]. The result substitution is [N / 0]. ---------------------------------------- (10) BOUNDS(INF, INF)