/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 109 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 480 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 107 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 68 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 100 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 97 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 52 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (30) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X))))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0, X)) -> mark(0) active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0)) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0) -> ok(0) proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(fact(X)) -> mark(if(zero(X), s(0), prod(X, fact(p(X))))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0, X)) -> mark(0) active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0)) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(0) -> ok(0) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 true0() -> 0 false0() -> 0 active0(0) -> 0 fact0(0) -> 1 if0(0, 0, 0) -> 2 zero0(0) -> 3 s0(0) -> 4 prod0(0, 0) -> 5 p0(0) -> 6 add0(0, 0) -> 7 proper0(0) -> 8 top0(0) -> 9 fact1(0) -> 10 mark1(10) -> 1 if1(0, 0, 0) -> 11 mark1(11) -> 2 zero1(0) -> 12 mark1(12) -> 3 s1(0) -> 13 mark1(13) -> 4 prod1(0, 0) -> 14 mark1(14) -> 5 p1(0) -> 15 mark1(15) -> 6 add1(0, 0) -> 16 mark1(16) -> 7 01() -> 17 ok1(17) -> 8 true1() -> 18 ok1(18) -> 8 false1() -> 19 ok1(19) -> 8 fact1(0) -> 20 ok1(20) -> 1 if1(0, 0, 0) -> 21 ok1(21) -> 2 zero1(0) -> 22 ok1(22) -> 3 s1(0) -> 23 ok1(23) -> 4 prod1(0, 0) -> 24 ok1(24) -> 5 p1(0) -> 25 ok1(25) -> 6 add1(0, 0) -> 26 ok1(26) -> 7 proper1(0) -> 27 top1(27) -> 9 active1(0) -> 28 top1(28) -> 9 mark1(10) -> 10 mark1(10) -> 20 mark1(11) -> 11 mark1(11) -> 21 mark1(12) -> 12 mark1(12) -> 22 mark1(13) -> 13 mark1(13) -> 23 mark1(14) -> 14 mark1(14) -> 24 mark1(15) -> 15 mark1(15) -> 25 mark1(16) -> 16 mark1(16) -> 26 ok1(17) -> 27 ok1(18) -> 27 ok1(19) -> 27 ok1(20) -> 10 ok1(20) -> 20 ok1(21) -> 11 ok1(21) -> 21 ok1(22) -> 12 ok1(22) -> 22 ok1(23) -> 13 ok1(23) -> 23 ok1(24) -> 14 ok1(24) -> 24 ok1(25) -> 15 ok1(25) -> 25 ok1(26) -> 16 ok1(26) -> 26 active2(17) -> 29 top2(29) -> 9 active2(18) -> 29 active2(19) -> 29 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, if, zero, s, prod, fact, p, add, proper, top They will be analysed ascendingly in the following order: if < active zero < active s < active prod < active fact < active p < active add < active active < top if < proper zero < proper s < proper prod < proper fact < proper p < proper add < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: if, active, zero, s, prod, fact, p, add, proper, top They will be analysed ascendingly in the following order: if < active zero < active s < active prod < active fact < active p < active add < active active < top if < proper zero < proper s < proper prod < proper fact < proper p < proper add < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) Induction Base: if(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) Induction Step: if(gen_0':mark:true:false:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) ->_R^Omega(1) mark(if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: if, active, zero, s, prod, fact, p, add, proper, top They will be analysed ascendingly in the following order: if < active zero < active s < active prod < active fact < active p < active add < active active < top if < proper zero < proper s < proper prod < proper fact < proper p < proper add < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: zero, active, s, prod, fact, p, add, proper, top They will be analysed ascendingly in the following order: zero < active s < active prod < active fact < active p < active add < active active < top zero < proper s < proper prod < proper fact < proper p < proper add < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) Induction Base: zero(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: zero(gen_0':mark:true:false:ok3_0(+(1, +(n1783_0, 1)))) ->_R^Omega(1) mark(zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: s, active, prod, fact, p, add, proper, top They will be analysed ascendingly in the following order: s < active prod < active fact < active p < active add < active active < top s < proper prod < proper fact < proper p < proper add < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_0':mark:true:false:ok3_0(+(1, n2390_0))) -> *4_0, rt in Omega(n2390_0) Induction Base: s(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: s(gen_0':mark:true:false:ok3_0(+(1, +(n2390_0, 1)))) ->_R^Omega(1) mark(s(gen_0':mark:true:false:ok3_0(+(1, n2390_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) s(gen_0':mark:true:false:ok3_0(+(1, n2390_0))) -> *4_0, rt in Omega(n2390_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: prod, active, fact, p, add, proper, top They will be analysed ascendingly in the following order: prod < active fact < active p < active add < active active < top prod < proper fact < proper p < proper add < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: prod(gen_0':mark:true:false:ok3_0(+(1, n3098_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3098_0) Induction Base: prod(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b)) Induction Step: prod(gen_0':mark:true:false:ok3_0(+(1, +(n3098_0, 1))), gen_0':mark:true:false:ok3_0(b)) ->_R^Omega(1) mark(prod(gen_0':mark:true:false:ok3_0(+(1, n3098_0)), gen_0':mark:true:false:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) s(gen_0':mark:true:false:ok3_0(+(1, n2390_0))) -> *4_0, rt in Omega(n2390_0) prod(gen_0':mark:true:false:ok3_0(+(1, n3098_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3098_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: fact, active, p, add, proper, top They will be analysed ascendingly in the following order: fact < active p < active add < active active < top fact < proper p < proper add < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fact(gen_0':mark:true:false:ok3_0(+(1, n5210_0))) -> *4_0, rt in Omega(n5210_0) Induction Base: fact(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: fact(gen_0':mark:true:false:ok3_0(+(1, +(n5210_0, 1)))) ->_R^Omega(1) mark(fact(gen_0':mark:true:false:ok3_0(+(1, n5210_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) s(gen_0':mark:true:false:ok3_0(+(1, n2390_0))) -> *4_0, rt in Omega(n2390_0) prod(gen_0':mark:true:false:ok3_0(+(1, n3098_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3098_0) fact(gen_0':mark:true:false:ok3_0(+(1, n5210_0))) -> *4_0, rt in Omega(n5210_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: p, active, add, proper, top They will be analysed ascendingly in the following order: p < active add < active active < top p < proper add < proper proper < top ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_0':mark:true:false:ok3_0(+(1, n6169_0))) -> *4_0, rt in Omega(n6169_0) Induction Base: p(gen_0':mark:true:false:ok3_0(+(1, 0))) Induction Step: p(gen_0':mark:true:false:ok3_0(+(1, +(n6169_0, 1)))) ->_R^Omega(1) mark(p(gen_0':mark:true:false:ok3_0(+(1, n6169_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) s(gen_0':mark:true:false:ok3_0(+(1, n2390_0))) -> *4_0, rt in Omega(n2390_0) prod(gen_0':mark:true:false:ok3_0(+(1, n3098_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3098_0) fact(gen_0':mark:true:false:ok3_0(+(1, n5210_0))) -> *4_0, rt in Omega(n5210_0) p(gen_0':mark:true:false:ok3_0(+(1, n6169_0))) -> *4_0, rt in Omega(n6169_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: add, active, proper, top They will be analysed ascendingly in the following order: add < active active < top add < proper proper < top ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':mark:true:false:ok3_0(+(1, n7229_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n7229_0) Induction Base: add(gen_0':mark:true:false:ok3_0(+(1, 0)), gen_0':mark:true:false:ok3_0(b)) Induction Step: add(gen_0':mark:true:false:ok3_0(+(1, +(n7229_0, 1))), gen_0':mark:true:false:ok3_0(b)) ->_R^Omega(1) mark(add(gen_0':mark:true:false:ok3_0(+(1, n7229_0)), gen_0':mark:true:false:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) Obligation: TRS: Rules: active(fact(X)) -> mark(if(zero(X), s(0'), prod(X, fact(p(X))))) active(add(0', X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(prod(0', X)) -> mark(0') active(prod(s(X), Y)) -> mark(add(Y, prod(X, Y))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(zero(0')) -> mark(true) active(zero(s(X))) -> mark(false) active(p(s(X))) -> mark(X) active(fact(X)) -> fact(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(zero(X)) -> zero(active(X)) active(s(X)) -> s(active(X)) active(prod(X1, X2)) -> prod(active(X1), X2) active(prod(X1, X2)) -> prod(X1, active(X2)) active(p(X)) -> p(active(X)) active(add(X1, X2)) -> add(active(X1), X2) active(add(X1, X2)) -> add(X1, active(X2)) fact(mark(X)) -> mark(fact(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) zero(mark(X)) -> mark(zero(X)) s(mark(X)) -> mark(s(X)) prod(mark(X1), X2) -> mark(prod(X1, X2)) prod(X1, mark(X2)) -> mark(prod(X1, X2)) p(mark(X)) -> mark(p(X)) add(mark(X1), X2) -> mark(add(X1, X2)) add(X1, mark(X2)) -> mark(add(X1, X2)) proper(fact(X)) -> fact(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(zero(X)) -> zero(proper(X)) proper(s(X)) -> s(proper(X)) proper(0') -> ok(0') proper(prod(X1, X2)) -> prod(proper(X1), proper(X2)) proper(p(X)) -> p(proper(X)) proper(add(X1, X2)) -> add(proper(X1), proper(X2)) proper(true) -> ok(true) proper(false) -> ok(false) fact(ok(X)) -> ok(fact(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) zero(ok(X)) -> ok(zero(X)) s(ok(X)) -> ok(s(X)) prod(ok(X1), ok(X2)) -> ok(prod(X1, X2)) p(ok(X)) -> ok(p(X)) add(ok(X1), ok(X2)) -> ok(add(X1, X2)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:true:false:ok -> 0':mark:true:false:ok fact :: 0':mark:true:false:ok -> 0':mark:true:false:ok mark :: 0':mark:true:false:ok -> 0':mark:true:false:ok if :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok zero :: 0':mark:true:false:ok -> 0':mark:true:false:ok s :: 0':mark:true:false:ok -> 0':mark:true:false:ok 0' :: 0':mark:true:false:ok prod :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok p :: 0':mark:true:false:ok -> 0':mark:true:false:ok add :: 0':mark:true:false:ok -> 0':mark:true:false:ok -> 0':mark:true:false:ok true :: 0':mark:true:false:ok false :: 0':mark:true:false:ok proper :: 0':mark:true:false:ok -> 0':mark:true:false:ok ok :: 0':mark:true:false:ok -> 0':mark:true:false:ok top :: 0':mark:true:false:ok -> top hole_0':mark:true:false:ok1_0 :: 0':mark:true:false:ok hole_top2_0 :: top gen_0':mark:true:false:ok3_0 :: Nat -> 0':mark:true:false:ok Lemmas: if(gen_0':mark:true:false:ok3_0(+(1, n5_0)), gen_0':mark:true:false:ok3_0(b), gen_0':mark:true:false:ok3_0(c)) -> *4_0, rt in Omega(n5_0) zero(gen_0':mark:true:false:ok3_0(+(1, n1783_0))) -> *4_0, rt in Omega(n1783_0) s(gen_0':mark:true:false:ok3_0(+(1, n2390_0))) -> *4_0, rt in Omega(n2390_0) prod(gen_0':mark:true:false:ok3_0(+(1, n3098_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n3098_0) fact(gen_0':mark:true:false:ok3_0(+(1, n5210_0))) -> *4_0, rt in Omega(n5210_0) p(gen_0':mark:true:false:ok3_0(+(1, n6169_0))) -> *4_0, rt in Omega(n6169_0) add(gen_0':mark:true:false:ok3_0(+(1, n7229_0)), gen_0':mark:true:false:ok3_0(b)) -> *4_0, rt in Omega(n7229_0) Generator Equations: gen_0':mark:true:false:ok3_0(0) <=> 0' gen_0':mark:true:false:ok3_0(+(x, 1)) <=> mark(gen_0':mark:true:false:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top