/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 17 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(a__dbl(mark(X)))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(mark(X)) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(a__dbl(mark(X)))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(mark(X)) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(first(X1, X2)) ->^+ a__first(mark(X1), mark(X2)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X1 / first(X1, X2)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(a__dbl(mark(X)))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(mark(X)) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(a__add(a__sqr(mark(X)), a__dbl(mark(X)))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(a__dbl(mark(X)))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(mark(X)) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence mark(terms(X)) ->^+ cons(recip(a__sqr(mark(mark(X)))), terms(s(mark(X)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0,0]. The pumping substitution is [X / terms(X)]. The result substitution is [ ]. The rewrite sequence mark(terms(X)) ->^+ cons(recip(a__sqr(mark(mark(X)))), terms(s(mark(X)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. The pumping substitution is [X / terms(X)]. The result substitution is [ ]. ---------------------------------------- (10) BOUNDS(EXP, INF)