/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(incr(nil)) -> mark(nil) active(incr(cons(X, L))) -> mark(cons(s(X), incr(L))) active(adx(nil)) -> mark(nil) active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L)))) active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(head(cons(X, L))) -> mark(X) active(tail(cons(X, L))) -> mark(L) active(incr(X)) -> incr(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(adx(X)) -> adx(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) incr(mark(X)) -> mark(incr(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) adx(mark(X)) -> mark(adx(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(incr(X)) -> incr(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(adx(X)) -> adx(proper(X)) proper(nats) -> ok(nats) proper(zeros) -> ok(zeros) proper(0) -> ok(0) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) incr(ok(X)) -> ok(incr(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) adx(ok(X)) -> ok(adx(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(incr(nil)) -> mark(nil) active(incr(cons(X, L))) -> mark(cons(s(X), incr(L))) active(adx(nil)) -> mark(nil) active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L)))) active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(head(cons(X, L))) -> mark(X) active(tail(cons(X, L))) -> mark(L) active(incr(X)) -> incr(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(adx(X)) -> adx(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) incr(mark(X)) -> mark(incr(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) adx(mark(X)) -> mark(adx(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(incr(X)) -> incr(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(adx(X)) -> adx(proper(X)) proper(nats) -> ok(nats) proper(zeros) -> ok(zeros) proper(0) -> ok(0) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) incr(ok(X)) -> ok(incr(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) adx(ok(X)) -> ok(adx(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence head(ok(X)) ->^+ ok(head(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / ok(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(incr(nil)) -> mark(nil) active(incr(cons(X, L))) -> mark(cons(s(X), incr(L))) active(adx(nil)) -> mark(nil) active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L)))) active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(head(cons(X, L))) -> mark(X) active(tail(cons(X, L))) -> mark(L) active(incr(X)) -> incr(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(adx(X)) -> adx(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) incr(mark(X)) -> mark(incr(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) adx(mark(X)) -> mark(adx(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(incr(X)) -> incr(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(adx(X)) -> adx(proper(X)) proper(nats) -> ok(nats) proper(zeros) -> ok(zeros) proper(0) -> ok(0) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) incr(ok(X)) -> ok(incr(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) adx(ok(X)) -> ok(adx(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(incr(nil)) -> mark(nil) active(incr(cons(X, L))) -> mark(cons(s(X), incr(L))) active(adx(nil)) -> mark(nil) active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L)))) active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(head(cons(X, L))) -> mark(X) active(tail(cons(X, L))) -> mark(L) active(incr(X)) -> incr(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(s(X)) -> s(active(X)) active(adx(X)) -> adx(active(X)) active(head(X)) -> head(active(X)) active(tail(X)) -> tail(active(X)) incr(mark(X)) -> mark(incr(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) s(mark(X)) -> mark(s(X)) adx(mark(X)) -> mark(adx(X)) head(mark(X)) -> mark(head(X)) tail(mark(X)) -> mark(tail(X)) proper(incr(X)) -> incr(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(adx(X)) -> adx(proper(X)) proper(nats) -> ok(nats) proper(zeros) -> ok(zeros) proper(0) -> ok(0) proper(head(X)) -> head(proper(X)) proper(tail(X)) -> tail(proper(X)) incr(ok(X)) -> ok(incr(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) s(ok(X)) -> ok(s(X)) adx(ok(X)) -> ok(adx(X)) head(ok(X)) -> ok(head(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL