/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 618 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 485 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 101 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 75 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 94 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 43 ms] (26) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of cons: active, proper, cons The following defined symbols can occur below the 1th argument of cons: active, proper, cons The following defined symbols can occur below the 0th argument of top: active, proper, cons The following defined symbols can occur below the 0th argument of proper: active, proper, cons The following defined symbols can occur below the 0th argument of active: active, proper, cons Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0) active(length(cons(N, L))) -> mark(U11(tt, L)) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(cons(X1, X2)) -> cons(active(X1), X2) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tt) -> ok(tt) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: active(zeros) -> mark(cons(0, zeros)) active(cons(X1, X2)) -> cons(active(X1), X2) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(tt) -> ok(tt) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 5. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8] transitions: zeros0() -> 0 mark0(0) -> 0 00() -> 0 ok0(0) -> 0 tt0() -> 0 nil0() -> 0 active0(0) -> 1 cons0(0, 0) -> 2 U110(0, 0) -> 3 U120(0, 0) -> 4 s0(0) -> 5 length0(0) -> 6 proper0(0) -> 7 top0(0) -> 8 01() -> 10 zeros1() -> 11 cons1(10, 11) -> 9 mark1(9) -> 1 cons1(0, 0) -> 12 mark1(12) -> 2 U111(0, 0) -> 13 mark1(13) -> 3 U121(0, 0) -> 14 mark1(14) -> 4 s1(0) -> 15 mark1(15) -> 5 length1(0) -> 16 mark1(16) -> 6 zeros1() -> 17 ok1(17) -> 7 01() -> 18 ok1(18) -> 7 tt1() -> 19 ok1(19) -> 7 nil1() -> 20 ok1(20) -> 7 cons1(0, 0) -> 21 ok1(21) -> 2 U111(0, 0) -> 22 ok1(22) -> 3 U121(0, 0) -> 23 ok1(23) -> 4 s1(0) -> 24 ok1(24) -> 5 length1(0) -> 25 ok1(25) -> 6 proper1(0) -> 26 top1(26) -> 8 active1(0) -> 27 top1(27) -> 8 mark1(9) -> 27 mark1(12) -> 12 mark1(12) -> 21 mark1(13) -> 13 mark1(13) -> 22 mark1(14) -> 14 mark1(14) -> 23 mark1(15) -> 15 mark1(15) -> 24 mark1(16) -> 16 mark1(16) -> 25 ok1(17) -> 26 ok1(18) -> 26 ok1(19) -> 26 ok1(20) -> 26 ok1(21) -> 12 ok1(21) -> 21 ok1(22) -> 13 ok1(22) -> 22 ok1(23) -> 14 ok1(23) -> 23 ok1(24) -> 15 ok1(24) -> 24 ok1(25) -> 16 ok1(25) -> 25 proper2(9) -> 28 top2(28) -> 8 active2(17) -> 29 top2(29) -> 8 active2(18) -> 29 active2(19) -> 29 active2(20) -> 29 02() -> 31 zeros2() -> 32 cons2(31, 32) -> 30 mark2(30) -> 29 proper2(10) -> 33 proper2(11) -> 34 cons2(33, 34) -> 28 zeros2() -> 35 ok2(35) -> 34 02() -> 36 ok2(36) -> 33 proper3(30) -> 37 top3(37) -> 8 proper3(31) -> 38 proper3(32) -> 39 cons3(38, 39) -> 37 cons3(36, 35) -> 40 ok3(40) -> 28 zeros3() -> 41 ok3(41) -> 39 03() -> 42 ok3(42) -> 38 active3(40) -> 43 top3(43) -> 8 cons4(42, 41) -> 44 ok4(44) -> 37 active4(36) -> 45 cons4(45, 35) -> 43 active4(44) -> 46 top4(46) -> 8 active5(42) -> 47 cons5(47, 41) -> 46 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, cons, U12, s, length, U11, proper, top They will be analysed ascendingly in the following order: cons < active U12 < active s < active length < active U11 < active active < top cons < proper U12 < proper s < proper length < proper U11 < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, U12, s, length, U11, proper, top They will be analysed ascendingly in the following order: cons < active U12 < active s < active length < active U11 < active active < top cons < proper U12 < proper s < proper length < proper U11 < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) Induction Step: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n5_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, U12, s, length, U11, proper, top They will be analysed ascendingly in the following order: cons < active U12 < active s < active length < active U11 < active active < top cons < proper U12 < proper s < proper length < proper U11 < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Lemmas: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: U12, active, s, length, U11, proper, top They will be analysed ascendingly in the following order: U12 < active s < active length < active U11 < active active < top U12 < proper s < proper length < proper U11 < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n874_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n874_0) Induction Base: U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) Induction Step: U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n874_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) ->_R^Omega(1) mark(U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n874_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Lemmas: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n874_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n874_0) Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: s, active, length, U11, proper, top They will be analysed ascendingly in the following order: s < active length < active U11 < active active < top s < proper length < proper U11 < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2049_0))) -> *4_0, rt in Omega(n2049_0) Induction Base: s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0))) Induction Step: s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n2049_0, 1)))) ->_R^Omega(1) mark(s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2049_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Lemmas: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n874_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n874_0) s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2049_0))) -> *4_0, rt in Omega(n2049_0) Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: length, active, U11, proper, top They will be analysed ascendingly in the following order: length < active U11 < active active < top length < proper U11 < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2709_0))) -> *4_0, rt in Omega(n2709_0) Induction Base: length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0))) Induction Step: length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n2709_0, 1)))) ->_R^Omega(1) mark(length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2709_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Lemmas: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n874_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n874_0) s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2049_0))) -> *4_0, rt in Omega(n2049_0) length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2709_0))) -> *4_0, rt in Omega(n2709_0) Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: U11, active, proper, top They will be analysed ascendingly in the following order: U11 < active active < top U11 < proper proper < top ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n3470_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n3470_0) Induction Base: U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, 0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) Induction Step: U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, +(n3470_0, 1))), gen_zeros:0':mark:tt:nil:ok3_0(b)) ->_R^Omega(1) mark(U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n3470_0)), gen_zeros:0':mark:tt:nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: TRS: Rules: active(zeros) -> mark(cons(0', zeros)) active(U11(tt, L)) -> mark(U12(tt, L)) active(U12(tt, L)) -> mark(s(length(L))) active(length(nil)) -> mark(0') active(length(cons(N, L))) -> mark(U11(tt, L)) active(cons(X1, X2)) -> cons(active(X1), X2) active(U11(X1, X2)) -> U11(active(X1), X2) active(U12(X1, X2)) -> U12(active(X1), X2) active(s(X)) -> s(active(X)) active(length(X)) -> length(active(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) U11(mark(X1), X2) -> mark(U11(X1, X2)) U12(mark(X1), X2) -> mark(U12(X1, X2)) s(mark(X)) -> mark(s(X)) length(mark(X)) -> mark(length(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0') -> ok(0') proper(U11(X1, X2)) -> U11(proper(X1), proper(X2)) proper(tt) -> ok(tt) proper(U12(X1, X2)) -> U12(proper(X1), proper(X2)) proper(s(X)) -> s(proper(X)) proper(length(X)) -> length(proper(X)) proper(nil) -> ok(nil) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) U11(ok(X1), ok(X2)) -> ok(U11(X1, X2)) U12(ok(X1), ok(X2)) -> ok(U12(X1, X2)) s(ok(X)) -> ok(s(X)) length(ok(X)) -> ok(length(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok zeros :: zeros:0':mark:tt:nil:ok mark :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok cons :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok 0' :: zeros:0':mark:tt:nil:ok U11 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok tt :: zeros:0':mark:tt:nil:ok U12 :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok s :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok length :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok nil :: zeros:0':mark:tt:nil:ok proper :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok ok :: zeros:0':mark:tt:nil:ok -> zeros:0':mark:tt:nil:ok top :: zeros:0':mark:tt:nil:ok -> top hole_zeros:0':mark:tt:nil:ok1_0 :: zeros:0':mark:tt:nil:ok hole_top2_0 :: top gen_zeros:0':mark:tt:nil:ok3_0 :: Nat -> zeros:0':mark:tt:nil:ok Lemmas: cons(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n5_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n5_0) U12(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n874_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n874_0) s(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2049_0))) -> *4_0, rt in Omega(n2049_0) length(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n2709_0))) -> *4_0, rt in Omega(n2709_0) U11(gen_zeros:0':mark:tt:nil:ok3_0(+(1, n3470_0)), gen_zeros:0':mark:tt:nil:ok3_0(b)) -> *4_0, rt in Omega(n3470_0) Generator Equations: gen_zeros:0':mark:tt:nil:ok3_0(0) <=> zeros gen_zeros:0':mark:tt:nil:ok3_0(+(x, 1)) <=> mark(gen_zeros:0':mark:tt:nil:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top