/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 39 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(n__0, n__0) -> true eq(n__s(X), n__s(Y)) -> eq(activate(X), activate(Y)) eq(X, Y) -> false inf(X) -> cons(X, n__inf(s(X))) take(0, X) -> nil take(s(X), cons(Y, L)) -> cons(activate(Y), n__take(activate(X), activate(L))) length(nil) -> 0 length(cons(X, L)) -> s(n__length(activate(L))) 0 -> n__0 s(X) -> n__s(X) inf(X) -> n__inf(X) take(X1, X2) -> n__take(X1, X2) length(X) -> n__length(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__inf(X)) -> inf(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__length(X)) -> length(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(n__0, n__0) -> true eq(n__s(X), n__s(Y)) -> eq(activate(X), activate(Y)) eq(X, Y) -> false inf(X) -> cons(X, n__inf(s(X))) take(0, X) -> nil take(s(X), cons(Y, L)) -> cons(activate(Y), n__take(activate(X), activate(L))) length(nil) -> 0 length(cons(X, L)) -> s(n__length(activate(L))) 0 -> n__0 s(X) -> n__s(X) inf(X) -> n__inf(X) take(X1, X2) -> n__take(X1, X2) length(X) -> n__length(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__inf(X)) -> inf(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__length(X)) -> length(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__length(cons(X1_0, L2_0))) ->^+ s(n__length(activate(L2_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [L2_0 / n__length(cons(X1_0, L2_0))]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(n__0, n__0) -> true eq(n__s(X), n__s(Y)) -> eq(activate(X), activate(Y)) eq(X, Y) -> false inf(X) -> cons(X, n__inf(s(X))) take(0, X) -> nil take(s(X), cons(Y, L)) -> cons(activate(Y), n__take(activate(X), activate(L))) length(nil) -> 0 length(cons(X, L)) -> s(n__length(activate(L))) 0 -> n__0 s(X) -> n__s(X) inf(X) -> n__inf(X) take(X1, X2) -> n__take(X1, X2) length(X) -> n__length(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__inf(X)) -> inf(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__length(X)) -> length(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(n__0, n__0) -> true eq(n__s(X), n__s(Y)) -> eq(activate(X), activate(Y)) eq(X, Y) -> false inf(X) -> cons(X, n__inf(s(X))) take(0, X) -> nil take(s(X), cons(Y, L)) -> cons(activate(Y), n__take(activate(X), activate(L))) length(nil) -> 0 length(cons(X, L)) -> s(n__length(activate(L))) 0 -> n__0 s(X) -> n__s(X) inf(X) -> n__inf(X) take(X1, X2) -> n__take(X1, X2) length(X) -> n__length(X) activate(n__0) -> 0 activate(n__s(X)) -> s(X) activate(n__inf(X)) -> inf(X) activate(n__take(X1, X2)) -> take(X1, X2) activate(n__length(X)) -> length(X) activate(X) -> X S is empty. Rewrite Strategy: FULL