/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 302 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 48 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X Types: from :: s:n__from:0':n__cons -> s:n__from:0':n__cons cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons n__from :: s:n__from:0':n__cons -> s:n__from:0':n__cons s :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndspos :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons 0' :: s:n__from:0':n__cons rnil :: rnil:rcons n__cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons rcons :: posrecip:negrecip -> rnil:rcons -> rnil:rcons posrecip :: s:n__from:0':n__cons -> posrecip:negrecip activate :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndsneg :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons negrecip :: s:n__from:0':n__cons -> posrecip:negrecip pi :: s:n__from:0':n__cons -> rnil:rcons plus :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons times :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons square :: s:n__from:0':n__cons -> s:n__from:0':n__cons hole_s:n__from:0':n__cons1_0 :: s:n__from:0':n__cons hole_rnil:rcons2_0 :: rnil:rcons hole_posrecip:negrecip3_0 :: posrecip:negrecip gen_s:n__from:0':n__cons4_0 :: Nat -> s:n__from:0':n__cons gen_rnil:rcons5_0 :: Nat -> rnil:rcons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: 2ndspos, 2ndsneg, plus, times They will be analysed ascendingly in the following order: 2ndspos = 2ndsneg plus < times ---------------------------------------- (6) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X Types: from :: s:n__from:0':n__cons -> s:n__from:0':n__cons cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons n__from :: s:n__from:0':n__cons -> s:n__from:0':n__cons s :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndspos :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons 0' :: s:n__from:0':n__cons rnil :: rnil:rcons n__cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons rcons :: posrecip:negrecip -> rnil:rcons -> rnil:rcons posrecip :: s:n__from:0':n__cons -> posrecip:negrecip activate :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndsneg :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons negrecip :: s:n__from:0':n__cons -> posrecip:negrecip pi :: s:n__from:0':n__cons -> rnil:rcons plus :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons times :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons square :: s:n__from:0':n__cons -> s:n__from:0':n__cons hole_s:n__from:0':n__cons1_0 :: s:n__from:0':n__cons hole_rnil:rcons2_0 :: rnil:rcons hole_posrecip:negrecip3_0 :: posrecip:negrecip gen_s:n__from:0':n__cons4_0 :: Nat -> s:n__from:0':n__cons gen_rnil:rcons5_0 :: Nat -> rnil:rcons Generator Equations: gen_s:n__from:0':n__cons4_0(0) <=> 0' gen_s:n__from:0':n__cons4_0(+(x, 1)) <=> s(gen_s:n__from:0':n__cons4_0(x)) gen_rnil:rcons5_0(0) <=> rnil gen_rnil:rcons5_0(+(x, 1)) <=> rcons(posrecip(0'), gen_rnil:rcons5_0(x)) The following defined symbols remain to be analysed: plus, 2ndspos, 2ndsneg, times They will be analysed ascendingly in the following order: 2ndspos = 2ndsneg plus < times ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:n__from:0':n__cons4_0(n7_0), gen_s:n__from:0':n__cons4_0(b)) -> gen_s:n__from:0':n__cons4_0(+(n7_0, b)), rt in Omega(1 + n7_0) Induction Base: plus(gen_s:n__from:0':n__cons4_0(0), gen_s:n__from:0':n__cons4_0(b)) ->_R^Omega(1) gen_s:n__from:0':n__cons4_0(b) Induction Step: plus(gen_s:n__from:0':n__cons4_0(+(n7_0, 1)), gen_s:n__from:0':n__cons4_0(b)) ->_R^Omega(1) s(plus(gen_s:n__from:0':n__cons4_0(n7_0), gen_s:n__from:0':n__cons4_0(b))) ->_IH s(gen_s:n__from:0':n__cons4_0(+(b, c8_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X Types: from :: s:n__from:0':n__cons -> s:n__from:0':n__cons cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons n__from :: s:n__from:0':n__cons -> s:n__from:0':n__cons s :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndspos :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons 0' :: s:n__from:0':n__cons rnil :: rnil:rcons n__cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons rcons :: posrecip:negrecip -> rnil:rcons -> rnil:rcons posrecip :: s:n__from:0':n__cons -> posrecip:negrecip activate :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndsneg :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons negrecip :: s:n__from:0':n__cons -> posrecip:negrecip pi :: s:n__from:0':n__cons -> rnil:rcons plus :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons times :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons square :: s:n__from:0':n__cons -> s:n__from:0':n__cons hole_s:n__from:0':n__cons1_0 :: s:n__from:0':n__cons hole_rnil:rcons2_0 :: rnil:rcons hole_posrecip:negrecip3_0 :: posrecip:negrecip gen_s:n__from:0':n__cons4_0 :: Nat -> s:n__from:0':n__cons gen_rnil:rcons5_0 :: Nat -> rnil:rcons Generator Equations: gen_s:n__from:0':n__cons4_0(0) <=> 0' gen_s:n__from:0':n__cons4_0(+(x, 1)) <=> s(gen_s:n__from:0':n__cons4_0(x)) gen_rnil:rcons5_0(0) <=> rnil gen_rnil:rcons5_0(+(x, 1)) <=> rcons(posrecip(0'), gen_rnil:rcons5_0(x)) The following defined symbols remain to be analysed: plus, 2ndspos, 2ndsneg, times They will be analysed ascendingly in the following order: 2ndspos = 2ndsneg plus < times ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X Types: from :: s:n__from:0':n__cons -> s:n__from:0':n__cons cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons n__from :: s:n__from:0':n__cons -> s:n__from:0':n__cons s :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndspos :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons 0' :: s:n__from:0':n__cons rnil :: rnil:rcons n__cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons rcons :: posrecip:negrecip -> rnil:rcons -> rnil:rcons posrecip :: s:n__from:0':n__cons -> posrecip:negrecip activate :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndsneg :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons negrecip :: s:n__from:0':n__cons -> posrecip:negrecip pi :: s:n__from:0':n__cons -> rnil:rcons plus :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons times :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons square :: s:n__from:0':n__cons -> s:n__from:0':n__cons hole_s:n__from:0':n__cons1_0 :: s:n__from:0':n__cons hole_rnil:rcons2_0 :: rnil:rcons hole_posrecip:negrecip3_0 :: posrecip:negrecip gen_s:n__from:0':n__cons4_0 :: Nat -> s:n__from:0':n__cons gen_rnil:rcons5_0 :: Nat -> rnil:rcons Lemmas: plus(gen_s:n__from:0':n__cons4_0(n7_0), gen_s:n__from:0':n__cons4_0(b)) -> gen_s:n__from:0':n__cons4_0(+(n7_0, b)), rt in Omega(1 + n7_0) Generator Equations: gen_s:n__from:0':n__cons4_0(0) <=> 0' gen_s:n__from:0':n__cons4_0(+(x, 1)) <=> s(gen_s:n__from:0':n__cons4_0(x)) gen_rnil:rcons5_0(0) <=> rnil gen_rnil:rcons5_0(+(x, 1)) <=> rcons(posrecip(0'), gen_rnil:rcons5_0(x)) The following defined symbols remain to be analysed: times, 2ndspos, 2ndsneg They will be analysed ascendingly in the following order: 2ndspos = 2ndsneg ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: times(gen_s:n__from:0':n__cons4_0(n724_0), gen_s:n__from:0':n__cons4_0(b)) -> gen_s:n__from:0':n__cons4_0(*(n724_0, b)), rt in Omega(1 + b*n724_0 + n724_0) Induction Base: times(gen_s:n__from:0':n__cons4_0(0), gen_s:n__from:0':n__cons4_0(b)) ->_R^Omega(1) 0' Induction Step: times(gen_s:n__from:0':n__cons4_0(+(n724_0, 1)), gen_s:n__from:0':n__cons4_0(b)) ->_R^Omega(1) plus(gen_s:n__from:0':n__cons4_0(b), times(gen_s:n__from:0':n__cons4_0(n724_0), gen_s:n__from:0':n__cons4_0(b))) ->_IH plus(gen_s:n__from:0':n__cons4_0(b), gen_s:n__from:0':n__cons4_0(*(c725_0, b))) ->_L^Omega(1 + b) gen_s:n__from:0':n__cons4_0(+(b, *(n724_0, b))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X Types: from :: s:n__from:0':n__cons -> s:n__from:0':n__cons cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons n__from :: s:n__from:0':n__cons -> s:n__from:0':n__cons s :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndspos :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons 0' :: s:n__from:0':n__cons rnil :: rnil:rcons n__cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons rcons :: posrecip:negrecip -> rnil:rcons -> rnil:rcons posrecip :: s:n__from:0':n__cons -> posrecip:negrecip activate :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndsneg :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons negrecip :: s:n__from:0':n__cons -> posrecip:negrecip pi :: s:n__from:0':n__cons -> rnil:rcons plus :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons times :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons square :: s:n__from:0':n__cons -> s:n__from:0':n__cons hole_s:n__from:0':n__cons1_0 :: s:n__from:0':n__cons hole_rnil:rcons2_0 :: rnil:rcons hole_posrecip:negrecip3_0 :: posrecip:negrecip gen_s:n__from:0':n__cons4_0 :: Nat -> s:n__from:0':n__cons gen_rnil:rcons5_0 :: Nat -> rnil:rcons Lemmas: plus(gen_s:n__from:0':n__cons4_0(n7_0), gen_s:n__from:0':n__cons4_0(b)) -> gen_s:n__from:0':n__cons4_0(+(n7_0, b)), rt in Omega(1 + n7_0) Generator Equations: gen_s:n__from:0':n__cons4_0(0) <=> 0' gen_s:n__from:0':n__cons4_0(+(x, 1)) <=> s(gen_s:n__from:0':n__cons4_0(x)) gen_rnil:rcons5_0(0) <=> rnil gen_rnil:rcons5_0(+(x, 1)) <=> rcons(posrecip(0'), gen_rnil:rcons5_0(x)) The following defined symbols remain to be analysed: times, 2ndspos, 2ndsneg They will be analysed ascendingly in the following order: 2ndspos = 2ndsneg ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) 2ndspos(0', Z) -> rnil 2ndspos(s(N), cons(X, n__cons(Y, Z))) -> rcons(posrecip(activate(Y)), 2ndsneg(N, activate(Z))) 2ndsneg(0', Z) -> rnil 2ndsneg(s(N), cons(X, n__cons(Y, Z))) -> rcons(negrecip(activate(Y)), 2ndspos(N, activate(Z))) pi(X) -> 2ndspos(X, from(0')) plus(0', Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0', Y) -> 0' times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) from(X) -> n__from(X) cons(X1, X2) -> n__cons(X1, X2) activate(n__from(X)) -> from(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(X) -> X Types: from :: s:n__from:0':n__cons -> s:n__from:0':n__cons cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons n__from :: s:n__from:0':n__cons -> s:n__from:0':n__cons s :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndspos :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons 0' :: s:n__from:0':n__cons rnil :: rnil:rcons n__cons :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons rcons :: posrecip:negrecip -> rnil:rcons -> rnil:rcons posrecip :: s:n__from:0':n__cons -> posrecip:negrecip activate :: s:n__from:0':n__cons -> s:n__from:0':n__cons 2ndsneg :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> rnil:rcons negrecip :: s:n__from:0':n__cons -> posrecip:negrecip pi :: s:n__from:0':n__cons -> rnil:rcons plus :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons times :: s:n__from:0':n__cons -> s:n__from:0':n__cons -> s:n__from:0':n__cons square :: s:n__from:0':n__cons -> s:n__from:0':n__cons hole_s:n__from:0':n__cons1_0 :: s:n__from:0':n__cons hole_rnil:rcons2_0 :: rnil:rcons hole_posrecip:negrecip3_0 :: posrecip:negrecip gen_s:n__from:0':n__cons4_0 :: Nat -> s:n__from:0':n__cons gen_rnil:rcons5_0 :: Nat -> rnil:rcons Lemmas: plus(gen_s:n__from:0':n__cons4_0(n7_0), gen_s:n__from:0':n__cons4_0(b)) -> gen_s:n__from:0':n__cons4_0(+(n7_0, b)), rt in Omega(1 + n7_0) times(gen_s:n__from:0':n__cons4_0(n724_0), gen_s:n__from:0':n__cons4_0(b)) -> gen_s:n__from:0':n__cons4_0(*(n724_0, b)), rt in Omega(1 + b*n724_0 + n724_0) Generator Equations: gen_s:n__from:0':n__cons4_0(0) <=> 0' gen_s:n__from:0':n__cons4_0(+(x, 1)) <=> s(gen_s:n__from:0':n__cons4_0(x)) gen_rnil:rcons5_0(0) <=> rnil gen_rnil:rcons5_0(+(x, 1)) <=> rcons(posrecip(0'), gen_rnil:rcons5_0(x)) The following defined symbols remain to be analysed: 2ndsneg, 2ndspos They will be analysed ascendingly in the following order: 2ndspos = 2ndsneg