/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 43 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) InfiniteLowerBoundProof [FINISHED, 1424 ms] (10) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) hd(cons(X, Y)) -> activate(X) tl(cons(X, Y)) -> activate(Y) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(X) activate(n__adx(X)) -> adx(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) hd(cons(X, Y)) -> activate(X) tl(cons(X, Y)) -> activate(Y) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(X) activate(n__adx(X)) -> adx(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__incr(cons(X1_0, Y2_0))) ->^+ cons(n__s(activate(X1_0)), n__incr(activate(Y2_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [X1_0 / n__incr(cons(X1_0, Y2_0))]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) hd(cons(X, Y)) -> activate(X) tl(cons(X, Y)) -> activate(Y) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(X) activate(n__adx(X)) -> adx(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(n__0, n__zeros) incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) hd(cons(X, Y)) -> activate(X) tl(cons(X, Y)) -> activate(Y) 0 -> n__0 zeros -> n__zeros s(X) -> n__s(X) incr(X) -> n__incr(X) adx(X) -> n__adx(X) activate(n__0) -> 0 activate(n__zeros) -> zeros activate(n__s(X)) -> s(X) activate(n__incr(X)) -> incr(X) activate(n__adx(X)) -> adx(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) InfiniteLowerBoundProof (FINISHED) The following loop proves infinite runtime complexity: The rewrite sequence incr(cons(X, n__adx(cons(X1_1, n__zeros)))) ->^+ cons(n__s(activate(X)), n__incr(incr(cons(activate(X1_1), n__adx(cons(n__0, n__zeros)))))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0]. The pumping substitution is [ ]. The result substitution is [X / activate(X1_1), X1_1 / n__0]. ---------------------------------------- (10) BOUNDS(INF, INF)