/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 271 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0) -> 0 minus(s(X), s(Y)) -> minus(X, Y) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0') -> 0' minus(s(X), s(Y)) -> minus(X, Y) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0') -> 0' minus(s(X), s(Y)) -> minus(X, Y) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X Types: from :: s:0' -> n__from:cons:nil:n__zWquot cons :: s:0' -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot n__from :: s:0' -> n__from:cons:nil:n__zWquot s :: s:0' -> s:0' sel :: s:0' -> n__from:cons:nil:n__zWquot -> s:0' 0' :: s:0' activate :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot minus :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot nil :: n__from:cons:nil:n__zWquot n__zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot hole_n__from:cons:nil:n__zWquot1_0 :: n__from:cons:nil:n__zWquot hole_s:0'2_0 :: s:0' gen_n__from:cons:nil:n__zWquot3_0 :: Nat -> n__from:cons:nil:n__zWquot gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sel, activate, minus, quot They will be analysed ascendingly in the following order: activate < sel quot < activate minus < quot ---------------------------------------- (6) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0') -> 0' minus(s(X), s(Y)) -> minus(X, Y) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X Types: from :: s:0' -> n__from:cons:nil:n__zWquot cons :: s:0' -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot n__from :: s:0' -> n__from:cons:nil:n__zWquot s :: s:0' -> s:0' sel :: s:0' -> n__from:cons:nil:n__zWquot -> s:0' 0' :: s:0' activate :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot minus :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot nil :: n__from:cons:nil:n__zWquot n__zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot hole_n__from:cons:nil:n__zWquot1_0 :: n__from:cons:nil:n__zWquot hole_s:0'2_0 :: s:0' gen_n__from:cons:nil:n__zWquot3_0 :: Nat -> n__from:cons:nil:n__zWquot gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_n__from:cons:nil:n__zWquot3_0(0) <=> n__from(0') gen_n__from:cons:nil:n__zWquot3_0(+(x, 1)) <=> cons(0', gen_n__from:cons:nil:n__zWquot3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: minus, sel, activate, quot They will be analysed ascendingly in the following order: activate < sel quot < activate minus < quot ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> gen_s:0'4_0(0), rt in Omega(1 + n6_0) Induction Base: minus(gen_s:0'4_0(0), gen_s:0'4_0(0)) ->_R^Omega(1) 0' Induction Step: minus(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) ->_R^Omega(1) minus(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) ->_IH gen_s:0'4_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0') -> 0' minus(s(X), s(Y)) -> minus(X, Y) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X Types: from :: s:0' -> n__from:cons:nil:n__zWquot cons :: s:0' -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot n__from :: s:0' -> n__from:cons:nil:n__zWquot s :: s:0' -> s:0' sel :: s:0' -> n__from:cons:nil:n__zWquot -> s:0' 0' :: s:0' activate :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot minus :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot nil :: n__from:cons:nil:n__zWquot n__zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot hole_n__from:cons:nil:n__zWquot1_0 :: n__from:cons:nil:n__zWquot hole_s:0'2_0 :: s:0' gen_n__from:cons:nil:n__zWquot3_0 :: Nat -> n__from:cons:nil:n__zWquot gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_n__from:cons:nil:n__zWquot3_0(0) <=> n__from(0') gen_n__from:cons:nil:n__zWquot3_0(+(x, 1)) <=> cons(0', gen_n__from:cons:nil:n__zWquot3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: minus, sel, activate, quot They will be analysed ascendingly in the following order: activate < sel quot < activate minus < quot ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: from(X) -> cons(X, n__from(s(X))) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) minus(X, 0') -> 0' minus(s(X), s(Y)) -> minus(X, Y) quot(0', s(Y)) -> 0' quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) zWquot(XS, nil) -> nil zWquot(nil, XS) -> nil zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS))) from(X) -> n__from(X) zWquot(X1, X2) -> n__zWquot(X1, X2) activate(n__from(X)) -> from(X) activate(n__zWquot(X1, X2)) -> zWquot(X1, X2) activate(X) -> X Types: from :: s:0' -> n__from:cons:nil:n__zWquot cons :: s:0' -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot n__from :: s:0' -> n__from:cons:nil:n__zWquot s :: s:0' -> s:0' sel :: s:0' -> n__from:cons:nil:n__zWquot -> s:0' 0' :: s:0' activate :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot minus :: s:0' -> s:0' -> s:0' quot :: s:0' -> s:0' -> s:0' zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot nil :: n__from:cons:nil:n__zWquot n__zWquot :: n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot -> n__from:cons:nil:n__zWquot hole_n__from:cons:nil:n__zWquot1_0 :: n__from:cons:nil:n__zWquot hole_s:0'2_0 :: s:0' gen_n__from:cons:nil:n__zWquot3_0 :: Nat -> n__from:cons:nil:n__zWquot gen_s:0'4_0 :: Nat -> s:0' Lemmas: minus(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> gen_s:0'4_0(0), rt in Omega(1 + n6_0) Generator Equations: gen_n__from:cons:nil:n__zWquot3_0(0) <=> n__from(0') gen_n__from:cons:nil:n__zWquot3_0(+(x, 1)) <=> cons(0', gen_n__from:cons:nil:n__zWquot3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: quot, sel, activate They will be analysed ascendingly in the following order: activate < sel quot < activate