/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 2 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 32 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(X)) -> mark(if(X, c, f(true))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(f(X)) -> f(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(if(X1, X2, X3)) -> if(X1, active(X2), X3) f(mark(X)) -> mark(f(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) proper(f(X)) -> f(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(c) -> ok(c) proper(true) -> ok(true) proper(false) -> ok(false) f(ok(X)) -> ok(f(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(f(X)) -> mark(if(X, c, f(true))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(f(X)) -> f(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(if(X1, X2, X3)) -> if(X1, active(X2), X3) proper(f(X)) -> f(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) proper(c) -> ok(c) proper(true) -> ok(true) proper(false) -> ok(false) f(ok(X)) -> ok(f(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(mark(X)) -> mark(f(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) proper(c) -> ok(c) proper(true) -> ok(true) proper(false) -> ok(false) f(ok(X)) -> ok(f(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: mark0(0) -> 0 c0() -> 0 ok0(0) -> 0 true0() -> 0 false0() -> 0 active0(0) -> 0 f0(0) -> 1 if0(0, 0, 0) -> 2 proper0(0) -> 3 top0(0) -> 4 f1(0) -> 5 mark1(5) -> 1 if1(0, 0, 0) -> 6 mark1(6) -> 2 c1() -> 7 ok1(7) -> 3 true1() -> 8 ok1(8) -> 3 false1() -> 9 ok1(9) -> 3 f1(0) -> 10 ok1(10) -> 1 if1(0, 0, 0) -> 11 ok1(11) -> 2 proper1(0) -> 12 top1(12) -> 4 active1(0) -> 13 top1(13) -> 4 mark1(5) -> 5 mark1(5) -> 10 mark1(6) -> 6 mark1(6) -> 11 ok1(7) -> 12 ok1(8) -> 12 ok1(9) -> 12 ok1(10) -> 5 ok1(10) -> 10 ok1(11) -> 6 ok1(11) -> 11 active2(7) -> 14 top2(14) -> 4 active2(8) -> 14 active2(9) -> 14 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(X)) -> mark(if(X, c, f(true))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(f(X)) -> f(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(if(X1, X2, X3)) -> if(X1, active(X2), X3) f(mark(X)) -> mark(f(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) proper(f(X)) -> f(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(c) -> ok(c) proper(true) -> ok(true) proper(false) -> ok(false) f(ok(X)) -> ok(f(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(ok(X)) ->^+ ok(f(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / ok(X)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(X)) -> mark(if(X, c, f(true))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(f(X)) -> f(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(if(X1, X2, X3)) -> if(X1, active(X2), X3) f(mark(X)) -> mark(f(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) proper(f(X)) -> f(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(c) -> ok(c) proper(true) -> ok(true) proper(false) -> ok(false) f(ok(X)) -> ok(f(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(f(X)) -> mark(if(X, c, f(true))) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(f(X)) -> f(active(X)) active(if(X1, X2, X3)) -> if(active(X1), X2, X3) active(if(X1, X2, X3)) -> if(X1, active(X2), X3) f(mark(X)) -> mark(f(X)) if(mark(X1), X2, X3) -> mark(if(X1, X2, X3)) if(X1, mark(X2), X3) -> mark(if(X1, X2, X3)) proper(f(X)) -> f(proper(X)) proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3)) proper(c) -> ok(c) proper(true) -> ok(true) proper(false) -> ok(false) f(ok(X)) -> ok(f(X)) if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL