/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 43 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 418 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 101 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 71 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 81 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: mark0(0) -> 0 ok0(0) -> 0 proper0(0) -> 0 active0(0) -> 0 2nd0(0) -> 1 cons0(0, 0) -> 2 from0(0) -> 3 s0(0) -> 4 top0(0) -> 5 2nd1(0) -> 6 mark1(6) -> 1 cons1(0, 0) -> 7 mark1(7) -> 2 from1(0) -> 8 mark1(8) -> 3 s1(0) -> 9 mark1(9) -> 4 2nd1(0) -> 10 ok1(10) -> 1 cons1(0, 0) -> 11 ok1(11) -> 2 from1(0) -> 12 ok1(12) -> 3 s1(0) -> 13 ok1(13) -> 4 proper1(0) -> 14 top1(14) -> 5 active1(0) -> 15 top1(15) -> 5 mark1(6) -> 6 mark1(6) -> 10 mark1(7) -> 7 mark1(7) -> 11 mark1(8) -> 8 mark1(8) -> 12 mark1(9) -> 9 mark1(9) -> 13 ok1(10) -> 6 ok1(10) -> 10 ok1(11) -> 7 ok1(11) -> 11 ok1(12) -> 8 ok1(12) -> 12 ok1(13) -> 9 ok1(13) -> 13 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, cons, from, s, 2nd, proper, top They will be analysed ascendingly in the following order: cons < active from < active s < active 2nd < active active < top cons < proper from < proper s < proper 2nd < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, from, s, 2nd, proper, top They will be analysed ascendingly in the following order: cons < active from < active s < active 2nd < active active < top cons < proper from < proper s < proper 2nd < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: cons(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Induction Base: cons(gen_mark:ok3_0(+(1, 0)), gen_mark:ok3_0(b)) Induction Step: cons(gen_mark:ok3_0(+(1, +(n5_0, 1))), gen_mark:ok3_0(b)) ->_R^Omega(1) mark(cons(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, from, s, 2nd, proper, top They will be analysed ascendingly in the following order: cons < active from < active s < active 2nd < active active < top cons < proper from < proper s < proper 2nd < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: cons(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: from, active, s, 2nd, proper, top They will be analysed ascendingly in the following order: from < active s < active 2nd < active active < top from < proper s < proper 2nd < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: from(gen_mark:ok3_0(+(1, n720_0))) -> *4_0, rt in Omega(n720_0) Induction Base: from(gen_mark:ok3_0(+(1, 0))) Induction Step: from(gen_mark:ok3_0(+(1, +(n720_0, 1)))) ->_R^Omega(1) mark(from(gen_mark:ok3_0(+(1, n720_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: cons(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) from(gen_mark:ok3_0(+(1, n720_0))) -> *4_0, rt in Omega(n720_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: s, active, 2nd, proper, top They will be analysed ascendingly in the following order: s < active 2nd < active active < top s < proper 2nd < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: s(gen_mark:ok3_0(+(1, n1197_0))) -> *4_0, rt in Omega(n1197_0) Induction Base: s(gen_mark:ok3_0(+(1, 0))) Induction Step: s(gen_mark:ok3_0(+(1, +(n1197_0, 1)))) ->_R^Omega(1) mark(s(gen_mark:ok3_0(+(1, n1197_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: cons(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) from(gen_mark:ok3_0(+(1, n720_0))) -> *4_0, rt in Omega(n720_0) s(gen_mark:ok3_0(+(1, n1197_0))) -> *4_0, rt in Omega(n1197_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: 2nd, active, proper, top They will be analysed ascendingly in the following order: 2nd < active active < top 2nd < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: 2nd(gen_mark:ok3_0(+(1, n1775_0))) -> *4_0, rt in Omega(n1775_0) Induction Base: 2nd(gen_mark:ok3_0(+(1, 0))) Induction Step: 2nd(gen_mark:ok3_0(+(1, +(n1775_0, 1)))) ->_R^Omega(1) mark(2nd(gen_mark:ok3_0(+(1, n1775_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(2nd(cons(X, cons(Y, Z)))) -> mark(Y) active(from(X)) -> mark(cons(X, from(s(X)))) active(2nd(X)) -> 2nd(active(X)) active(cons(X1, X2)) -> cons(active(X1), X2) active(from(X)) -> from(active(X)) active(s(X)) -> s(active(X)) 2nd(mark(X)) -> mark(2nd(X)) cons(mark(X1), X2) -> mark(cons(X1, X2)) from(mark(X)) -> mark(from(X)) s(mark(X)) -> mark(s(X)) proper(2nd(X)) -> 2nd(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) proper(s(X)) -> s(proper(X)) 2nd(ok(X)) -> ok(2nd(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) from(ok(X)) -> ok(from(X)) s(ok(X)) -> ok(s(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: mark:ok -> mark:ok 2nd :: mark:ok -> mark:ok cons :: mark:ok -> mark:ok -> mark:ok mark :: mark:ok -> mark:ok from :: mark:ok -> mark:ok s :: mark:ok -> mark:ok proper :: mark:ok -> mark:ok ok :: mark:ok -> mark:ok top :: mark:ok -> top hole_mark:ok1_0 :: mark:ok hole_top2_0 :: top gen_mark:ok3_0 :: Nat -> mark:ok Lemmas: cons(gen_mark:ok3_0(+(1, n5_0)), gen_mark:ok3_0(b)) -> *4_0, rt in Omega(n5_0) from(gen_mark:ok3_0(+(1, n720_0))) -> *4_0, rt in Omega(n720_0) s(gen_mark:ok3_0(+(1, n1197_0))) -> *4_0, rt in Omega(n1197_0) 2nd(gen_mark:ok3_0(+(1, n1775_0))) -> *4_0, rt in Omega(n1775_0) Generator Equations: gen_mark:ok3_0(0) <=> hole_mark:ok1_0 gen_mark:ok3_0(+(x, 1)) <=> mark(gen_mark:ok3_0(x)) The following defined symbols remain to be analysed: active, proper, top They will be analysed ascendingly in the following order: active < top proper < top