/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 98 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__tail(cons(X, XS)) -> mark(XS) mark(zeros) -> a__zeros mark(tail(X)) -> a__tail(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 a__zeros -> zeros a__tail(X) -> tail(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__tail(cons(X, XS)) -> mark(XS) mark(zeros) -> a__zeros mark(tail(X)) -> a__tail(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 a__zeros -> zeros a__tail(X) -> tail(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: cons0(0, 0) -> 0 00() -> 0 zeros0() -> 0 tail0(0) -> 0 a__zeros0() -> 1 a__tail0(0) -> 2 mark0(0) -> 3 01() -> 4 zeros1() -> 5 cons1(4, 5) -> 1 mark1(0) -> 2 a__zeros1() -> 3 mark1(0) -> 6 a__tail1(6) -> 3 mark1(0) -> 7 cons1(7, 0) -> 3 01() -> 3 zeros1() -> 1 tail1(0) -> 2 02() -> 8 zeros2() -> 9 cons2(8, 9) -> 3 a__zeros1() -> 2 a__zeros1() -> 6 a__zeros1() -> 7 a__tail1(6) -> 2 a__tail1(6) -> 6 a__tail1(6) -> 7 cons1(7, 0) -> 2 cons1(7, 0) -> 6 cons1(7, 0) -> 7 01() -> 2 01() -> 6 01() -> 7 zeros2() -> 3 tail2(6) -> 3 cons2(8, 9) -> 2 cons2(8, 9) -> 6 cons2(8, 9) -> 7 mark2(0) -> 2 mark2(0) -> 3 mark2(0) -> 6 mark2(0) -> 7 zeros2() -> 2 zeros2() -> 6 zeros2() -> 7 tail2(6) -> 2 tail2(6) -> 6 tail2(6) -> 7 mark2(9) -> 2 mark2(9) -> 3 mark2(9) -> 6 mark2(9) -> 7 a__zeros3() -> 2 a__zeros3() -> 3 a__zeros3() -> 6 a__zeros3() -> 7 04() -> 10 zeros4() -> 11 cons4(10, 11) -> 2 cons4(10, 11) -> 3 cons4(10, 11) -> 6 cons4(10, 11) -> 7 zeros4() -> 2 zeros4() -> 3 zeros4() -> 6 zeros4() -> 7 mark2(11) -> 2 mark2(11) -> 3 mark2(11) -> 6 mark2(11) -> 7 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__tail(cons(X, XS)) -> mark(XS) mark(zeros) -> a__zeros mark(tail(X)) -> a__tail(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 a__zeros -> zeros a__tail(X) -> tail(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(tail(X)) ->^+ a__tail(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / tail(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__tail(cons(X, XS)) -> mark(XS) mark(zeros) -> a__zeros mark(tail(X)) -> a__tail(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 a__zeros -> zeros a__tail(X) -> tail(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__zeros -> cons(0, zeros) a__tail(cons(X, XS)) -> mark(XS) mark(zeros) -> a__zeros mark(tail(X)) -> a__tail(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 a__zeros -> zeros a__tail(X) -> tail(X) S is empty. Rewrite Strategy: FULL