/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 421 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(g(X)) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(g(X)) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[1, 2] {(1,2,[f_1|0, f_1|1]), (2,2,[g_1|0])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(X)) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: f(g(X)) -> f(X) Types: f :: g -> f g :: g -> g hole_f1_0 :: f hole_g2_0 :: g gen_g3_0 :: Nat -> g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f ---------------------------------------- (10) Obligation: TRS: Rules: f(g(X)) -> f(X) Types: f :: g -> f g :: g -> g hole_f1_0 :: f hole_g2_0 :: g gen_g3_0 :: Nat -> g Generator Equations: gen_g3_0(0) <=> hole_g2_0 gen_g3_0(+(x, 1)) <=> g(gen_g3_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_g3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) Induction Base: f(gen_g3_0(+(1, 0))) Induction Step: f(gen_g3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) f(gen_g3_0(+(1, n5_0))) ->_IH *4_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(g(X)) -> f(X) Types: f :: g -> f g :: g -> g hole_f1_0 :: f hole_g2_0 :: g gen_g3_0 :: Nat -> g Generator Equations: gen_g3_0(0) <=> hole_g2_0 gen_g3_0(+(x, 1)) <=> g(gen_g3_0(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)