/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 522 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__tail(cons(X, XS)) -> mark(XS) a__repItems(nil) -> nil a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__tail(cons(X, XS)) -> mark(XS) a__repItems(nil) -> nil a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(repItems(X)) ->^+ a__repItems(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / repItems(X)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__tail(cons(X, XS)) -> mark(XS) a__repItems(nil) -> nil a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: a__pairNs -> cons(0, incr(oddNs)) a__oddNs -> a__incr(a__pairNs) a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) a__take(0, XS) -> nil a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) a__zip(nil, XS) -> nil a__zip(X, nil) -> nil a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) a__tail(cons(X, XS)) -> mark(XS) a__repItems(nil) -> nil a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) mark(pairNs) -> a__pairNs mark(incr(X)) -> a__incr(mark(X)) mark(oddNs) -> a__oddNs mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) mark(tail(X)) -> a__tail(mark(X)) mark(repItems(X)) -> a__repItems(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(nil) -> nil mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) a__pairNs -> pairNs a__incr(X) -> incr(X) a__oddNs -> oddNs a__take(X1, X2) -> take(X1, X2) a__zip(X1, X2) -> zip(X1, X2) a__tail(X) -> tail(X) a__repItems(X) -> repItems(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence mark(repItems(cons(X11_0, X22_0))) ->^+ cons(mark(mark(X11_0)), cons(mark(X11_0), repItems(X22_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [X11_0 / repItems(cons(X11_0, X22_0))]. The result substitution is [ ]. The rewrite sequence mark(repItems(cons(X11_0, X22_0))) ->^+ cons(mark(mark(X11_0)), cons(mark(X11_0), repItems(X22_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0]. The pumping substitution is [X11_0 / repItems(cons(X11_0, X22_0))]. The result substitution is [ ]. ---------------------------------------- (10) BOUNDS(EXP, INF)