/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 66 ms] (6) BOUNDS(1, n^1) (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (8) TRS for Loop Detection (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(U11(tt)) -> mark(U12(tt)) active(U12(tt)) -> mark(tt) active(isNePal(__(I, __(P, I)))) -> mark(U11(tt)) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(U11(X)) -> U11(active(X)) active(U12(X)) -> U12(active(X)) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) U11(mark(X)) -> mark(U11(X)) U12(mark(X)) -> mark(U12(X)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(U11(X)) -> U11(proper(X)) proper(tt) -> ok(tt) proper(U12(X)) -> U12(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) U11(ok(X)) -> ok(U11(X)) U12(ok(X)) -> ok(U12(X)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(U11(tt)) -> mark(U12(tt)) active(U12(tt)) -> mark(tt) active(isNePal(__(I, __(P, I)))) -> mark(U11(tt)) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(U11(X)) -> U11(active(X)) active(U12(X)) -> U12(active(X)) active(isNePal(X)) -> isNePal(active(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(U11(X)) -> U11(proper(X)) proper(U12(X)) -> U12(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) U11(mark(X)) -> mark(U11(X)) U12(mark(X)) -> mark(U12(X)) isNePal(mark(X)) -> mark(isNePal(X)) proper(nil) -> ok(nil) proper(tt) -> ok(tt) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) U11(ok(X)) -> ok(U11(X)) U12(ok(X)) -> ok(U12(X)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) U11(mark(X)) -> mark(U11(X)) U12(mark(X)) -> mark(U12(X)) isNePal(mark(X)) -> mark(isNePal(X)) proper(nil) -> ok(nil) proper(tt) -> ok(tt) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) U11(ok(X)) -> ok(U11(X)) U12(ok(X)) -> ok(U12(X)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6] transitions: mark0(0) -> 0 nil0() -> 0 ok0(0) -> 0 tt0() -> 0 active0(0) -> 0 __0(0, 0) -> 1 U110(0) -> 2 U120(0) -> 3 isNePal0(0) -> 4 proper0(0) -> 5 top0(0) -> 6 __1(0, 0) -> 7 mark1(7) -> 1 U111(0) -> 8 mark1(8) -> 2 U121(0) -> 9 mark1(9) -> 3 isNePal1(0) -> 10 mark1(10) -> 4 nil1() -> 11 ok1(11) -> 5 tt1() -> 12 ok1(12) -> 5 __1(0, 0) -> 13 ok1(13) -> 1 U111(0) -> 14 ok1(14) -> 2 U121(0) -> 15 ok1(15) -> 3 isNePal1(0) -> 16 ok1(16) -> 4 proper1(0) -> 17 top1(17) -> 6 active1(0) -> 18 top1(18) -> 6 mark1(7) -> 7 mark1(7) -> 13 mark1(8) -> 8 mark1(8) -> 14 mark1(9) -> 9 mark1(9) -> 15 mark1(10) -> 10 mark1(10) -> 16 ok1(11) -> 17 ok1(12) -> 17 ok1(13) -> 7 ok1(13) -> 13 ok1(14) -> 8 ok1(14) -> 14 ok1(15) -> 9 ok1(15) -> 15 ok1(16) -> 10 ok1(16) -> 16 active2(11) -> 19 top2(19) -> 6 active2(12) -> 19 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(U11(tt)) -> mark(U12(tt)) active(U12(tt)) -> mark(tt) active(isNePal(__(I, __(P, I)))) -> mark(U11(tt)) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(U11(X)) -> U11(active(X)) active(U12(X)) -> U12(active(X)) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) U11(mark(X)) -> mark(U11(X)) U12(mark(X)) -> mark(U12(X)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(U11(X)) -> U11(proper(X)) proper(tt) -> ok(tt) proper(U12(X)) -> U12(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) U11(ok(X)) -> ok(U11(X)) U12(ok(X)) -> ok(U12(X)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence U11(mark(X)) ->^+ mark(U11(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / mark(X)]. The result substitution is [ ]. ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(U11(tt)) -> mark(U12(tt)) active(U12(tt)) -> mark(tt) active(isNePal(__(I, __(P, I)))) -> mark(U11(tt)) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(U11(X)) -> U11(active(X)) active(U12(X)) -> U12(active(X)) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) U11(mark(X)) -> mark(U11(X)) U12(mark(X)) -> mark(U12(X)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(U11(X)) -> U11(proper(X)) proper(tt) -> ok(tt) proper(U12(X)) -> U12(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) U11(ok(X)) -> ok(U11(X)) U12(ok(X)) -> ok(U12(X)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) active(__(X, nil)) -> mark(X) active(__(nil, X)) -> mark(X) active(U11(tt)) -> mark(U12(tt)) active(U12(tt)) -> mark(tt) active(isNePal(__(I, __(P, I)))) -> mark(U11(tt)) active(__(X1, X2)) -> __(active(X1), X2) active(__(X1, X2)) -> __(X1, active(X2)) active(U11(X)) -> U11(active(X)) active(U12(X)) -> U12(active(X)) active(isNePal(X)) -> isNePal(active(X)) __(mark(X1), X2) -> mark(__(X1, X2)) __(X1, mark(X2)) -> mark(__(X1, X2)) U11(mark(X)) -> mark(U11(X)) U12(mark(X)) -> mark(U12(X)) isNePal(mark(X)) -> mark(isNePal(X)) proper(__(X1, X2)) -> __(proper(X1), proper(X2)) proper(nil) -> ok(nil) proper(U11(X)) -> U11(proper(X)) proper(tt) -> ok(tt) proper(U12(X)) -> U12(proper(X)) proper(isNePal(X)) -> isNePal(proper(X)) __(ok(X1), ok(X2)) -> ok(__(X1, X2)) U11(ok(X)) -> ok(U11(X)) U12(ok(X)) -> ok(U12(X)) isNePal(ok(X)) -> ok(isNePal(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL