/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 90 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 458 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 88 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 35 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 110 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0, cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0) -> ok(0) proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The following defined symbols can occur below the 0th argument of top: proper, active The following defined symbols can occur below the 0th argument of proper: proper, active The following defined symbols can occur below the 0th argument of active: proper, active Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0, cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) proper(dbl(X)) -> dbl(proper(X)) proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(0) -> ok(0) proper(nil) -> ok(nil) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(0) -> ok(0) proper(nil) -> ok(nil) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7, 8, 9] transitions: mark0(0) -> 0 00() -> 0 ok0(0) -> 0 nil0() -> 0 active0(0) -> 0 dbl0(0) -> 1 dbls0(0) -> 2 sel0(0, 0) -> 3 indx0(0, 0) -> 4 proper0(0) -> 5 s0(0) -> 6 cons0(0, 0) -> 7 from0(0) -> 8 top0(0) -> 9 dbl1(0) -> 10 mark1(10) -> 1 dbls1(0) -> 11 mark1(11) -> 2 sel1(0, 0) -> 12 mark1(12) -> 3 indx1(0, 0) -> 13 mark1(13) -> 4 01() -> 14 ok1(14) -> 5 nil1() -> 15 ok1(15) -> 5 dbl1(0) -> 16 ok1(16) -> 1 s1(0) -> 17 ok1(17) -> 6 dbls1(0) -> 18 ok1(18) -> 2 cons1(0, 0) -> 19 ok1(19) -> 7 sel1(0, 0) -> 20 ok1(20) -> 3 indx1(0, 0) -> 21 ok1(21) -> 4 from1(0) -> 22 ok1(22) -> 8 proper1(0) -> 23 top1(23) -> 9 active1(0) -> 24 top1(24) -> 9 mark1(10) -> 10 mark1(10) -> 16 mark1(11) -> 11 mark1(11) -> 18 mark1(12) -> 12 mark1(12) -> 20 mark1(13) -> 13 mark1(13) -> 21 ok1(14) -> 23 ok1(15) -> 23 ok1(16) -> 10 ok1(16) -> 16 ok1(17) -> 17 ok1(18) -> 11 ok1(18) -> 18 ok1(19) -> 19 ok1(20) -> 12 ok1(20) -> 20 ok1(21) -> 13 ok1(21) -> 21 ok1(22) -> 22 active2(14) -> 25 top2(25) -> 9 active2(15) -> 25 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: active, s, dbl, cons, dbls, sel, indx, from, proper, top They will be analysed ascendingly in the following order: s < active dbl < active cons < active dbls < active sel < active indx < active from < active active < top s < proper dbl < proper cons < proper dbls < proper sel < proper indx < proper from < proper proper < top ---------------------------------------- (12) Obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok Generator Equations: gen_0':mark:nil:ok3_0(0) <=> 0' gen_0':mark:nil:ok3_0(+(x, 1)) <=> mark(gen_0':mark:nil:ok3_0(x)) The following defined symbols remain to be analysed: s, active, dbl, cons, dbls, sel, indx, from, proper, top They will be analysed ascendingly in the following order: s < active dbl < active cons < active dbls < active sel < active indx < active from < active active < top s < proper dbl < proper cons < proper dbls < proper sel < proper indx < proper from < proper proper < top ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dbl(gen_0':mark:nil:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) Induction Base: dbl(gen_0':mark:nil:ok3_0(+(1, 0))) Induction Step: dbl(gen_0':mark:nil:ok3_0(+(1, +(n9_0, 1)))) ->_R^Omega(1) mark(dbl(gen_0':mark:nil:ok3_0(+(1, n9_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok Generator Equations: gen_0':mark:nil:ok3_0(0) <=> 0' gen_0':mark:nil:ok3_0(+(x, 1)) <=> mark(gen_0':mark:nil:ok3_0(x)) The following defined symbols remain to be analysed: dbl, active, cons, dbls, sel, indx, from, proper, top They will be analysed ascendingly in the following order: dbl < active cons < active dbls < active sel < active indx < active from < active active < top dbl < proper cons < proper dbls < proper sel < proper indx < proper from < proper proper < top ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok Lemmas: dbl(gen_0':mark:nil:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) Generator Equations: gen_0':mark:nil:ok3_0(0) <=> 0' gen_0':mark:nil:ok3_0(+(x, 1)) <=> mark(gen_0':mark:nil:ok3_0(x)) The following defined symbols remain to be analysed: cons, active, dbls, sel, indx, from, proper, top They will be analysed ascendingly in the following order: cons < active dbls < active sel < active indx < active from < active active < top cons < proper dbls < proper sel < proper indx < proper from < proper proper < top ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: dbls(gen_0':mark:nil:ok3_0(+(1, n397_0))) -> *4_0, rt in Omega(n397_0) Induction Base: dbls(gen_0':mark:nil:ok3_0(+(1, 0))) Induction Step: dbls(gen_0':mark:nil:ok3_0(+(1, +(n397_0, 1)))) ->_R^Omega(1) mark(dbls(gen_0':mark:nil:ok3_0(+(1, n397_0)))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok Lemmas: dbl(gen_0':mark:nil:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) dbls(gen_0':mark:nil:ok3_0(+(1, n397_0))) -> *4_0, rt in Omega(n397_0) Generator Equations: gen_0':mark:nil:ok3_0(0) <=> 0' gen_0':mark:nil:ok3_0(+(x, 1)) <=> mark(gen_0':mark:nil:ok3_0(x)) The following defined symbols remain to be analysed: sel, active, indx, from, proper, top They will be analysed ascendingly in the following order: sel < active indx < active from < active active < top sel < proper indx < proper from < proper proper < top ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sel(gen_0':mark:nil:ok3_0(+(1, n876_0)), gen_0':mark:nil:ok3_0(b)) -> *4_0, rt in Omega(n876_0) Induction Base: sel(gen_0':mark:nil:ok3_0(+(1, 0)), gen_0':mark:nil:ok3_0(b)) Induction Step: sel(gen_0':mark:nil:ok3_0(+(1, +(n876_0, 1))), gen_0':mark:nil:ok3_0(b)) ->_R^Omega(1) mark(sel(gen_0':mark:nil:ok3_0(+(1, n876_0)), gen_0':mark:nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok Lemmas: dbl(gen_0':mark:nil:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) dbls(gen_0':mark:nil:ok3_0(+(1, n397_0))) -> *4_0, rt in Omega(n397_0) sel(gen_0':mark:nil:ok3_0(+(1, n876_0)), gen_0':mark:nil:ok3_0(b)) -> *4_0, rt in Omega(n876_0) Generator Equations: gen_0':mark:nil:ok3_0(0) <=> 0' gen_0':mark:nil:ok3_0(+(x, 1)) <=> mark(gen_0':mark:nil:ok3_0(x)) The following defined symbols remain to be analysed: indx, active, from, proper, top They will be analysed ascendingly in the following order: indx < active from < active active < top indx < proper from < proper proper < top ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: indx(gen_0':mark:nil:ok3_0(+(1, n2444_0)), gen_0':mark:nil:ok3_0(b)) -> *4_0, rt in Omega(n2444_0) Induction Base: indx(gen_0':mark:nil:ok3_0(+(1, 0)), gen_0':mark:nil:ok3_0(b)) Induction Step: indx(gen_0':mark:nil:ok3_0(+(1, +(n2444_0, 1))), gen_0':mark:nil:ok3_0(b)) ->_R^Omega(1) mark(indx(gen_0':mark:nil:ok3_0(+(1, n2444_0)), gen_0':mark:nil:ok3_0(b))) ->_IH mark(*4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: TRS: Rules: active(dbl(0')) -> mark(0') active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(dbls(nil)) -> mark(nil) active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y))) active(sel(0', cons(X, Y))) -> mark(X) active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z)) active(indx(nil, X)) -> mark(nil) active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(dbl(X)) -> dbl(active(X)) active(dbls(X)) -> dbls(active(X)) active(sel(X1, X2)) -> sel(active(X1), X2) active(sel(X1, X2)) -> sel(X1, active(X2)) active(indx(X1, X2)) -> indx(active(X1), X2) dbl(mark(X)) -> mark(dbl(X)) dbls(mark(X)) -> mark(dbls(X)) sel(mark(X1), X2) -> mark(sel(X1, X2)) sel(X1, mark(X2)) -> mark(sel(X1, X2)) indx(mark(X1), X2) -> mark(indx(X1, X2)) proper(dbl(X)) -> dbl(proper(X)) proper(0') -> ok(0') proper(s(X)) -> s(proper(X)) proper(dbls(X)) -> dbls(proper(X)) proper(nil) -> ok(nil) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(sel(X1, X2)) -> sel(proper(X1), proper(X2)) proper(indx(X1, X2)) -> indx(proper(X1), proper(X2)) proper(from(X)) -> from(proper(X)) dbl(ok(X)) -> ok(dbl(X)) s(ok(X)) -> ok(s(X)) dbls(ok(X)) -> ok(dbls(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) sel(ok(X1), ok(X2)) -> ok(sel(X1, X2)) indx(ok(X1), ok(X2)) -> ok(indx(X1, X2)) from(ok(X)) -> ok(from(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Types: active :: 0':mark:nil:ok -> 0':mark:nil:ok dbl :: 0':mark:nil:ok -> 0':mark:nil:ok 0' :: 0':mark:nil:ok mark :: 0':mark:nil:ok -> 0':mark:nil:ok s :: 0':mark:nil:ok -> 0':mark:nil:ok dbls :: 0':mark:nil:ok -> 0':mark:nil:ok nil :: 0':mark:nil:ok cons :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok sel :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok indx :: 0':mark:nil:ok -> 0':mark:nil:ok -> 0':mark:nil:ok from :: 0':mark:nil:ok -> 0':mark:nil:ok proper :: 0':mark:nil:ok -> 0':mark:nil:ok ok :: 0':mark:nil:ok -> 0':mark:nil:ok top :: 0':mark:nil:ok -> top hole_0':mark:nil:ok1_0 :: 0':mark:nil:ok hole_top2_0 :: top gen_0':mark:nil:ok3_0 :: Nat -> 0':mark:nil:ok Lemmas: dbl(gen_0':mark:nil:ok3_0(+(1, n9_0))) -> *4_0, rt in Omega(n9_0) dbls(gen_0':mark:nil:ok3_0(+(1, n397_0))) -> *4_0, rt in Omega(n397_0) sel(gen_0':mark:nil:ok3_0(+(1, n876_0)), gen_0':mark:nil:ok3_0(b)) -> *4_0, rt in Omega(n876_0) indx(gen_0':mark:nil:ok3_0(+(1, n2444_0)), gen_0':mark:nil:ok3_0(b)) -> *4_0, rt in Omega(n2444_0) Generator Equations: gen_0':mark:nil:ok3_0(0) <=> 0' gen_0':mark:nil:ok3_0(+(x, 1)) <=> mark(gen_0':mark:nil:ok3_0(x)) The following defined symbols remain to be analysed: from, active, proper, top They will be analysed ascendingly in the following order: from < active active < top from < proper proper < top