/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 260 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(0) -> cons(0, f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0) -> 0 mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(0') -> cons(0', f(s(0'))) a__f(s(0')) -> a__f(a__p(s(0'))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0') -> 0' mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: cons/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__f(0') -> cons(0') a__f(s(0')) -> a__f(a__p(s(0'))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0') -> 0' mark(cons(X1)) -> cons(mark(X1)) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: a__f(0') -> cons(0') a__f(s(0')) -> a__f(a__p(s(0'))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0') -> 0' mark(cons(X1)) -> cons(mark(X1)) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) Types: a__f :: 0':cons:s:f:p -> 0':cons:s:f:p 0' :: 0':cons:s:f:p cons :: 0':cons:s:f:p -> 0':cons:s:f:p s :: 0':cons:s:f:p -> 0':cons:s:f:p a__p :: 0':cons:s:f:p -> 0':cons:s:f:p mark :: 0':cons:s:f:p -> 0':cons:s:f:p f :: 0':cons:s:f:p -> 0':cons:s:f:p p :: 0':cons:s:f:p -> 0':cons:s:f:p hole_0':cons:s:f:p1_0 :: 0':cons:s:f:p gen_0':cons:s:f:p2_0 :: Nat -> 0':cons:s:f:p ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__f, a__p, mark They will be analysed ascendingly in the following order: a__f = a__p a__f = mark a__p = mark ---------------------------------------- (8) Obligation: TRS: Rules: a__f(0') -> cons(0') a__f(s(0')) -> a__f(a__p(s(0'))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0') -> 0' mark(cons(X1)) -> cons(mark(X1)) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) Types: a__f :: 0':cons:s:f:p -> 0':cons:s:f:p 0' :: 0':cons:s:f:p cons :: 0':cons:s:f:p -> 0':cons:s:f:p s :: 0':cons:s:f:p -> 0':cons:s:f:p a__p :: 0':cons:s:f:p -> 0':cons:s:f:p mark :: 0':cons:s:f:p -> 0':cons:s:f:p f :: 0':cons:s:f:p -> 0':cons:s:f:p p :: 0':cons:s:f:p -> 0':cons:s:f:p hole_0':cons:s:f:p1_0 :: 0':cons:s:f:p gen_0':cons:s:f:p2_0 :: Nat -> 0':cons:s:f:p Generator Equations: gen_0':cons:s:f:p2_0(0) <=> 0' gen_0':cons:s:f:p2_0(+(x, 1)) <=> cons(gen_0':cons:s:f:p2_0(x)) The following defined symbols remain to be analysed: a__p, a__f, mark They will be analysed ascendingly in the following order: a__f = a__p a__f = mark a__p = mark ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_0':cons:s:f:p2_0(n10_0)) -> gen_0':cons:s:f:p2_0(n10_0), rt in Omega(1 + n10_0) Induction Base: mark(gen_0':cons:s:f:p2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_0':cons:s:f:p2_0(+(n10_0, 1))) ->_R^Omega(1) cons(mark(gen_0':cons:s:f:p2_0(n10_0))) ->_IH cons(gen_0':cons:s:f:p2_0(c11_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: a__f(0') -> cons(0') a__f(s(0')) -> a__f(a__p(s(0'))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0') -> 0' mark(cons(X1)) -> cons(mark(X1)) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) Types: a__f :: 0':cons:s:f:p -> 0':cons:s:f:p 0' :: 0':cons:s:f:p cons :: 0':cons:s:f:p -> 0':cons:s:f:p s :: 0':cons:s:f:p -> 0':cons:s:f:p a__p :: 0':cons:s:f:p -> 0':cons:s:f:p mark :: 0':cons:s:f:p -> 0':cons:s:f:p f :: 0':cons:s:f:p -> 0':cons:s:f:p p :: 0':cons:s:f:p -> 0':cons:s:f:p hole_0':cons:s:f:p1_0 :: 0':cons:s:f:p gen_0':cons:s:f:p2_0 :: Nat -> 0':cons:s:f:p Generator Equations: gen_0':cons:s:f:p2_0(0) <=> 0' gen_0':cons:s:f:p2_0(+(x, 1)) <=> cons(gen_0':cons:s:f:p2_0(x)) The following defined symbols remain to be analysed: mark, a__f They will be analysed ascendingly in the following order: a__f = a__p a__f = mark a__p = mark ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: a__f(0') -> cons(0') a__f(s(0')) -> a__f(a__p(s(0'))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0') -> 0' mark(cons(X1)) -> cons(mark(X1)) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) Types: a__f :: 0':cons:s:f:p -> 0':cons:s:f:p 0' :: 0':cons:s:f:p cons :: 0':cons:s:f:p -> 0':cons:s:f:p s :: 0':cons:s:f:p -> 0':cons:s:f:p a__p :: 0':cons:s:f:p -> 0':cons:s:f:p mark :: 0':cons:s:f:p -> 0':cons:s:f:p f :: 0':cons:s:f:p -> 0':cons:s:f:p p :: 0':cons:s:f:p -> 0':cons:s:f:p hole_0':cons:s:f:p1_0 :: 0':cons:s:f:p gen_0':cons:s:f:p2_0 :: Nat -> 0':cons:s:f:p Lemmas: mark(gen_0':cons:s:f:p2_0(n10_0)) -> gen_0':cons:s:f:p2_0(n10_0), rt in Omega(1 + n10_0) Generator Equations: gen_0':cons:s:f:p2_0(0) <=> 0' gen_0':cons:s:f:p2_0(+(x, 1)) <=> cons(gen_0':cons:s:f:p2_0(x)) The following defined symbols remain to be analysed: a__f, a__p They will be analysed ascendingly in the following order: a__f = a__p a__f = mark a__p = mark