/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 55 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> s(length(activate(L))) and(tt, X) -> activate(X) isNat(n__0) -> tt isNat(n__length(V1)) -> isNatList(activate(V1)) isNat(n__s(V1)) -> isNat(activate(V1)) isNatIList(V) -> isNatList(activate(V)) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatIList(activate(V2))) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatList(activate(V2))) length(nil) -> 0 length(cons(N, L)) -> U11(and(isNatList(activate(L)), n__isNat(N)), activate(L)) zeros -> n__zeros 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(X) -> n__isNatIList(X) nil -> n__nil isNatList(X) -> n__isNatList(X) isNat(X) -> n__isNat(X) activate(n__zeros) -> zeros activate(n__0) -> 0 activate(n__length(X)) -> length(X) activate(n__s(X)) -> s(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__isNatIList(X)) -> isNatIList(X) activate(n__nil) -> nil activate(n__isNatList(X)) -> isNatList(X) activate(n__isNat(X)) -> isNat(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> s(length(activate(L))) and(tt, X) -> activate(X) isNat(n__0) -> tt isNat(n__length(V1)) -> isNatList(activate(V1)) isNat(n__s(V1)) -> isNat(activate(V1)) isNatIList(V) -> isNatList(activate(V)) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatIList(activate(V2))) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatList(activate(V2))) length(nil) -> 0 length(cons(N, L)) -> U11(and(isNatList(activate(L)), n__isNat(N)), activate(L)) zeros -> n__zeros 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(X) -> n__isNatIList(X) nil -> n__nil isNatList(X) -> n__isNatList(X) isNat(X) -> n__isNat(X) activate(n__zeros) -> zeros activate(n__0) -> 0 activate(n__length(X)) -> length(X) activate(n__s(X)) -> s(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__isNatIList(X)) -> isNatIList(X) activate(n__nil) -> nil activate(n__isNatList(X)) -> isNatList(X) activate(n__isNat(X)) -> isNat(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__isNatList(n__cons(V11_0, V22_0))) ->^+ and(isNat(activate(V11_0)), n__isNatList(activate(V22_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [V11_0 / n__isNatList(n__cons(V11_0, V22_0))]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> s(length(activate(L))) and(tt, X) -> activate(X) isNat(n__0) -> tt isNat(n__length(V1)) -> isNatList(activate(V1)) isNat(n__s(V1)) -> isNat(activate(V1)) isNatIList(V) -> isNatList(activate(V)) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatIList(activate(V2))) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatList(activate(V2))) length(nil) -> 0 length(cons(N, L)) -> U11(and(isNatList(activate(L)), n__isNat(N)), activate(L)) zeros -> n__zeros 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(X) -> n__isNatIList(X) nil -> n__nil isNatList(X) -> n__isNatList(X) isNat(X) -> n__isNat(X) activate(n__zeros) -> zeros activate(n__0) -> 0 activate(n__length(X)) -> length(X) activate(n__s(X)) -> s(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__isNatIList(X)) -> isNatIList(X) activate(n__nil) -> nil activate(n__isNatList(X)) -> isNatList(X) activate(n__isNat(X)) -> isNat(X) activate(X) -> X S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt, L) -> s(length(activate(L))) and(tt, X) -> activate(X) isNat(n__0) -> tt isNat(n__length(V1)) -> isNatList(activate(V1)) isNat(n__s(V1)) -> isNat(activate(V1)) isNatIList(V) -> isNatList(activate(V)) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatIList(activate(V2))) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> and(isNat(activate(V1)), n__isNatList(activate(V2))) length(nil) -> 0 length(cons(N, L)) -> U11(and(isNatList(activate(L)), n__isNat(N)), activate(L)) zeros -> n__zeros 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) isNatIList(X) -> n__isNatIList(X) nil -> n__nil isNatList(X) -> n__isNatList(X) isNat(X) -> n__isNat(X) activate(n__zeros) -> zeros activate(n__0) -> 0 activate(n__length(X)) -> length(X) activate(n__s(X)) -> s(X) activate(n__cons(X1, X2)) -> cons(X1, X2) activate(n__isNatIList(X)) -> isNatIList(X) activate(n__nil) -> nil activate(n__isNatList(X)) -> isNatList(X) activate(n__isNat(X)) -> isNat(X) activate(X) -> X S is empty. Rewrite Strategy: FULL