/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[1, 2, 5, 6, 7, 8] {(1,2,[a__f_1|0, mark_1|0, f_1|1, a__f_1|1, a|1, f_1|2]), (1,5,[a__f_1|1, f_1|2]), (1,8,[g_1|1]), (2,2,[f_1|0, a|0, g_1|0]), (5,6,[g_1|1]), (6,7,[f_1|1]), (7,2,[a|1]), (8,2,[mark_1|1, a__f_1|1, a|1, f_1|2]), (8,8,[g_1|1]), (8,5,[a__f_1|1, f_1|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(g(X)) ->^+ g(mark(X)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [X / g(X)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(f(a)) -> a__f(g(f(a))) mark(f(X)) -> a__f(X) mark(a) -> a mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) S is empty. Rewrite Strategy: FULL