/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 212 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(0) -> true f(1) -> false f(s(x)) -> f(x) if(true, x, y) -> x if(false, x, y) -> y g(s(x), s(y)) -> if(f(x), s(x), s(y)) g(x, c(y)) -> g(x, g(s(c(y)), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(0') -> true f(1') -> false f(s(x)) -> f(x) if(true, x, y) -> x if(false, x, y) -> y g(s(x), s(y)) -> if(f(x), s(x), s(y)) g(x, c(y)) -> g(x, g(s(c(y)), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(0') -> true f(1') -> false f(s(x)) -> f(x) if(true, x, y) -> x if(false, x, y) -> y g(s(x), s(y)) -> if(f(x), s(x), s(y)) g(x, c(y)) -> g(x, g(s(c(y)), y)) Types: f :: 0':1':s:c -> true:false 0' :: 0':1':s:c true :: true:false 1' :: 0':1':s:c false :: true:false s :: 0':1':s:c -> 0':1':s:c if :: true:false -> 0':1':s:c -> 0':1':s:c -> 0':1':s:c g :: 0':1':s:c -> 0':1':s:c -> 0':1':s:c c :: 0':1':s:c -> 0':1':s:c hole_true:false1_0 :: true:false hole_0':1':s:c2_0 :: 0':1':s:c gen_0':1':s:c3_0 :: Nat -> 0':1':s:c ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g They will be analysed ascendingly in the following order: f < g ---------------------------------------- (6) Obligation: TRS: Rules: f(0') -> true f(1') -> false f(s(x)) -> f(x) if(true, x, y) -> x if(false, x, y) -> y g(s(x), s(y)) -> if(f(x), s(x), s(y)) g(x, c(y)) -> g(x, g(s(c(y)), y)) Types: f :: 0':1':s:c -> true:false 0' :: 0':1':s:c true :: true:false 1' :: 0':1':s:c false :: true:false s :: 0':1':s:c -> 0':1':s:c if :: true:false -> 0':1':s:c -> 0':1':s:c -> 0':1':s:c g :: 0':1':s:c -> 0':1':s:c -> 0':1':s:c c :: 0':1':s:c -> 0':1':s:c hole_true:false1_0 :: true:false hole_0':1':s:c2_0 :: 0':1':s:c gen_0':1':s:c3_0 :: Nat -> 0':1':s:c Generator Equations: gen_0':1':s:c3_0(0) <=> 0' gen_0':1':s:c3_0(+(x, 1)) <=> s(gen_0':1':s:c3_0(x)) The following defined symbols remain to be analysed: f, g They will be analysed ascendingly in the following order: f < g ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_0':1':s:c3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: f(gen_0':1':s:c3_0(0)) ->_R^Omega(1) true Induction Step: f(gen_0':1':s:c3_0(+(n5_0, 1))) ->_R^Omega(1) f(gen_0':1':s:c3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(0') -> true f(1') -> false f(s(x)) -> f(x) if(true, x, y) -> x if(false, x, y) -> y g(s(x), s(y)) -> if(f(x), s(x), s(y)) g(x, c(y)) -> g(x, g(s(c(y)), y)) Types: f :: 0':1':s:c -> true:false 0' :: 0':1':s:c true :: true:false 1' :: 0':1':s:c false :: true:false s :: 0':1':s:c -> 0':1':s:c if :: true:false -> 0':1':s:c -> 0':1':s:c -> 0':1':s:c g :: 0':1':s:c -> 0':1':s:c -> 0':1':s:c c :: 0':1':s:c -> 0':1':s:c hole_true:false1_0 :: true:false hole_0':1':s:c2_0 :: 0':1':s:c gen_0':1':s:c3_0 :: Nat -> 0':1':s:c Generator Equations: gen_0':1':s:c3_0(0) <=> 0' gen_0':1':s:c3_0(+(x, 1)) <=> s(gen_0':1':s:c3_0(x)) The following defined symbols remain to be analysed: f, g They will be analysed ascendingly in the following order: f < g ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(0') -> true f(1') -> false f(s(x)) -> f(x) if(true, x, y) -> x if(false, x, y) -> y g(s(x), s(y)) -> if(f(x), s(x), s(y)) g(x, c(y)) -> g(x, g(s(c(y)), y)) Types: f :: 0':1':s:c -> true:false 0' :: 0':1':s:c true :: true:false 1' :: 0':1':s:c false :: true:false s :: 0':1':s:c -> 0':1':s:c if :: true:false -> 0':1':s:c -> 0':1':s:c -> 0':1':s:c g :: 0':1':s:c -> 0':1':s:c -> 0':1':s:c c :: 0':1':s:c -> 0':1':s:c hole_true:false1_0 :: true:false hole_0':1':s:c2_0 :: 0':1':s:c gen_0':1':s:c3_0 :: Nat -> 0':1':s:c Lemmas: f(gen_0':1':s:c3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':1':s:c3_0(0) <=> 0' gen_0':1':s:c3_0(+(x, 1)) <=> s(gen_0':1':s:c3_0(x)) The following defined symbols remain to be analysed: g