/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 229 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] (14) proven lower bound (15) LowerBoundPropagationProof [FINISHED, 0 ms] (16) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0', x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0', x))) weight(cons(n, nil)) -> n S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0', x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0', x))) weight(cons(n, nil)) -> n Types: sum :: cons:nil -> cons:nil -> cons:nil cons :: s:0' -> cons:nil -> cons:nil s :: s:0' -> s:0' 0' :: s:0' nil :: cons:nil weight :: cons:nil -> s:0' hole_cons:nil1_0 :: cons:nil hole_s:0'2_0 :: s:0' gen_cons:nil3_0 :: Nat -> cons:nil gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, weight They will be analysed ascendingly in the following order: sum < weight ---------------------------------------- (6) Obligation: TRS: Rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0', x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0', x))) weight(cons(n, nil)) -> n Types: sum :: cons:nil -> cons:nil -> cons:nil cons :: s:0' -> cons:nil -> cons:nil s :: s:0' -> s:0' 0' :: s:0' nil :: cons:nil weight :: cons:nil -> s:0' hole_cons:nil1_0 :: cons:nil hole_s:0'2_0 :: s:0' gen_cons:nil3_0 :: Nat -> cons:nil gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_cons:nil3_0(0) <=> nil gen_cons:nil3_0(+(x, 1)) <=> cons(0', gen_cons:nil3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: sum, weight They will be analysed ascendingly in the following order: sum < weight ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) -> gen_cons:nil3_0(b), rt in Omega(1 + n6_0) Induction Base: sum(gen_cons:nil3_0(0), gen_cons:nil3_0(b)) ->_R^Omega(1) gen_cons:nil3_0(b) Induction Step: sum(gen_cons:nil3_0(+(n6_0, 1)), gen_cons:nil3_0(b)) ->_R^Omega(1) sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) ->_IH gen_cons:nil3_0(b) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0', x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0', x))) weight(cons(n, nil)) -> n Types: sum :: cons:nil -> cons:nil -> cons:nil cons :: s:0' -> cons:nil -> cons:nil s :: s:0' -> s:0' 0' :: s:0' nil :: cons:nil weight :: cons:nil -> s:0' hole_cons:nil1_0 :: cons:nil hole_s:0'2_0 :: s:0' gen_cons:nil3_0 :: Nat -> cons:nil gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_cons:nil3_0(0) <=> nil gen_cons:nil3_0(+(x, 1)) <=> cons(0', gen_cons:nil3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: sum, weight They will be analysed ascendingly in the following order: sum < weight ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0', x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0', x))) weight(cons(n, nil)) -> n Types: sum :: cons:nil -> cons:nil -> cons:nil cons :: s:0' -> cons:nil -> cons:nil s :: s:0' -> s:0' 0' :: s:0' nil :: cons:nil weight :: cons:nil -> s:0' hole_cons:nil1_0 :: cons:nil hole_s:0'2_0 :: s:0' gen_cons:nil3_0 :: Nat -> cons:nil gen_s:0'4_0 :: Nat -> s:0' Lemmas: sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) -> gen_cons:nil3_0(b), rt in Omega(1 + n6_0) Generator Equations: gen_cons:nil3_0(0) <=> nil gen_cons:nil3_0(+(x, 1)) <=> cons(0', gen_cons:nil3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: weight ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: weight(gen_cons:nil3_0(+(1, n511_0))) -> gen_s:0'4_0(0), rt in Omega(1 + n511_0 + n511_0^2) Induction Base: weight(gen_cons:nil3_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: weight(gen_cons:nil3_0(+(1, +(n511_0, 1)))) ->_R^Omega(1) weight(sum(cons(0', cons(0', gen_cons:nil3_0(n511_0))), cons(0', gen_cons:nil3_0(n511_0)))) ->_L^Omega(3 + n511_0) weight(gen_cons:nil3_0(+(n511_0, 1))) ->_IH gen_s:0'4_0(0) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0', x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0', x))) weight(cons(n, nil)) -> n Types: sum :: cons:nil -> cons:nil -> cons:nil cons :: s:0' -> cons:nil -> cons:nil s :: s:0' -> s:0' 0' :: s:0' nil :: cons:nil weight :: cons:nil -> s:0' hole_cons:nil1_0 :: cons:nil hole_s:0'2_0 :: s:0' gen_cons:nil3_0 :: Nat -> cons:nil gen_s:0'4_0 :: Nat -> s:0' Lemmas: sum(gen_cons:nil3_0(n6_0), gen_cons:nil3_0(b)) -> gen_cons:nil3_0(b), rt in Omega(1 + n6_0) Generator Equations: gen_cons:nil3_0(0) <=> nil gen_cons:nil3_0(+(x, 1)) <=> cons(0', gen_cons:nil3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: weight ---------------------------------------- (15) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (16) BOUNDS(n^2, INF)