/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) DependencyGraphProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 408 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(0), g(x)) -> f(x, g(x)) g(s(x)) -> g(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DependencyGraphProof (UPPER BOUND(ID)) The following rules are not reachable from basic terms in the dependency graph and can be removed: f(s(0), g(x)) -> f(x, g(x)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(s(x)) -> g(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(s(x)) -> g(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. The certificate found is represented by the following graph. "[1, 2] {(1,2,[g_1|0, g_1|1]), (2,2,[s_1|0])}" ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(s(0'), g(x)) -> f(x, g(x)) g(s(x)) -> g(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: f(s(0'), g(x)) -> f(x, g(x)) g(s(x)) -> g(x) Types: f :: 0':s -> g -> f s :: 0':s -> 0':s 0' :: 0':s g :: 0':s -> g hole_f1_0 :: f hole_0':s2_0 :: 0':s hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g They will be analysed ascendingly in the following order: g < f ---------------------------------------- (12) Obligation: TRS: Rules: f(s(0'), g(x)) -> f(x, g(x)) g(s(x)) -> g(x) Types: f :: 0':s -> g -> f s :: 0':s -> 0':s 0' :: 0':s g :: 0':s -> g hole_f1_0 :: f hole_0':s2_0 :: 0':s hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: g, f They will be analysed ascendingly in the following order: g < f ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s4_0(+(1, n6_0))) -> *5_0, rt in Omega(n6_0) Induction Base: g(gen_0':s4_0(+(1, 0))) Induction Step: g(gen_0':s4_0(+(1, +(n6_0, 1)))) ->_R^Omega(1) g(gen_0':s4_0(+(1, n6_0))) ->_IH *5_0 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(s(0'), g(x)) -> f(x, g(x)) g(s(x)) -> g(x) Types: f :: 0':s -> g -> f s :: 0':s -> 0':s 0' :: 0':s g :: 0':s -> g hole_f1_0 :: f hole_0':s2_0 :: 0':s hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: g, f They will be analysed ascendingly in the following order: g < f ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: f(s(0'), g(x)) -> f(x, g(x)) g(s(x)) -> g(x) Types: f :: 0':s -> g -> f s :: 0':s -> 0':s 0' :: 0':s g :: 0':s -> g hole_f1_0 :: f hole_0':s2_0 :: 0':s hole_g3_0 :: g gen_0':s4_0 :: Nat -> 0':s Lemmas: g(gen_0':s4_0(+(1, n6_0))) -> *5_0, rt in Omega(n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: f