/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 7 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 352 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 101 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 528 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 240 ms] (28) CpxRNTS (29) FinalProof [FINISHED, 0 ms] (30) BOUNDS(1, n^2) (31) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (32) TRS for Loop Detection (33) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: quot(x, 0, s([])) The defined contexts are: quot(x0, [], s(x2)) quot(x0, [], x2) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: quot_3 (c) The following functions are completely defined: plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) [1] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 [1] quot(s(x), s(y), z) -> quot(x, y, z) [1] plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] quot(x, 0, s(0)) -> s(quot(x, s(0), s(0))) [2] quot(x, 0, s(s(x'))) -> s(quot(x, s(plus(x', s(0))), s(s(x')))) [2] The TRS has the following type information: quot :: 0:s -> 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 1 }-> quot(x, y, z) :|: z' = 1 + x, z1 = z, z >= 0, x >= 0, y >= 0, z'' = 1 + y quot(z', z'', z1) -{ 1 }-> 0 :|: z >= 0, y >= 0, z'' = 1 + y, z1 = 1 + z, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(x, 1 + plus(x', 1 + 0), 1 + (1 + x')) :|: z'' = 0, z' = x, x >= 0, x' >= 0, z1 = 1 + (1 + x') quot(z', z'', z1) -{ 2 }-> 1 + quot(x, 1 + 0, 1 + 0) :|: z'' = 0, z' = x, z1 = 1 + 0, x >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { quot } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {plus}, {quot} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> 1 + plus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + plus(z1 - 2, 1 + 0), 1 + (1 + (z1 - 2))) :|: z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: {quot} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: ?, size: O(n^1) [2 + 2*z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 5*z' + z'*z1 + z1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 + z' }-> 1 + s :|: s >= 0, s <= z' - 1 + z'', z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 1 }-> quot(z' - 1, z'' - 1, z1) :|: z1 >= 0, z' - 1 >= 0, z'' - 1 >= 0 quot(z', z'', z1) -{ 1 }-> 0 :|: z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 quot(z', z'', z1) -{ 1 + z1 }-> 1 + quot(z', 1 + s', 1 + (1 + (z1 - 2))) :|: s' >= 0, s' <= z1 - 2 + (1 + 0), z'' = 0, z' >= 0, z1 - 2 >= 0 quot(z', z'', z1) -{ 2 }-> 1 + quot(z', 1 + 0, 1 + 0) :|: z'' = 0, z1 = 1 + 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] quot: runtime: O(n^2) [5 + 5*z' + z'*z1 + z1], size: O(n^1) [2 + 2*z'] ---------------------------------------- (29) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (30) BOUNDS(1, n^2) ---------------------------------------- (31) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (32) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (33) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence plus(s(x), y) ->^+ s(plus(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) quot(x, 0, s(z)) -> s(quot(x, plus(z, s(0)), s(z))) S is empty. Rewrite Strategy: FULL