/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 1 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 333 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 115 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 269 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 72 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 138 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 372 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (42) CpxRNTS (43) FinalProof [FINISHED, 0 ms] (44) BOUNDS(1, n^2) (45) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (46) TRS for Loop Detection (47) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (48) BEST (49) proven lower bound (50) LowerBoundPropagationProof [FINISHED, 0 ms] (51) BOUNDS(n^1, INF) (52) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: minus([], s(y)) minus(x, s([])) The defined contexts are: if([], 0, x1) if(x0, 0, []) p([]) minus(x0, []) le(x0, s([])) p(s([])) le(x0, []) [] just represents basic- or constructor-terms in the following defined contexts: if([], 0, x1) minus(x0, []) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: le_2 p_1 minus_2 if_3 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: p(0) -> 0 [1] p(s(x)) -> x [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(x, 0) -> x [1] minus(0, s(y)) -> if(true, 0, p(minus(0, y))) [3] minus(s(x'), s(y)) -> if(le(x', y), 0, p(minus(s(x'), y))) [3] if(true, x, y) -> x [1] if(false, x, y) -> y [1] The TRS has the following type information: p :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false minus :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 3 }-> if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 3 }-> if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { if } { p } { minus } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {if}, {p}, {minus} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {if}, {p}, {minus} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {le}, {if}, {p}, {minus} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if}, {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if}, {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {if}, {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {minus} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 6*z' + z'^2 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z] minus: runtime: O(n^2) [1 + 6*z' + z'^2], size: O(n^1) [z] ---------------------------------------- (43) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (44) BOUNDS(1, n^2) ---------------------------------------- (45) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (46) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (47) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(x), s(y)) ->^+ le(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (48) Complex Obligation (BEST) ---------------------------------------- (49) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (50) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (51) BOUNDS(n^1, INF) ---------------------------------------- (52) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) if(true, x, y) -> x if(false, x, y) -> y S is empty. Rewrite Strategy: FULL